19,154 research outputs found

    Wave packet dynamics of potassium dimers attached to helium nanodroplets

    Full text link
    The dynamics of vibrational wave packets excited in K2_2 dimers attached to superfluid helium nanodroplets is investigated by means of femtosecond pump-probe spectroscopy. The employed resonant three-photon-ionization scheme is studied in a wide wavelength range and different pathways leading to K2+^+_2-formation are identified. While the wave packet dynamics of the electronic ground state is not influenced by the helium environment, perturbations of the electronically excited states are observed. The latter reveal a strong time dependence on the timescale 3-8 ps which directly reflects the dynamics of desorption of K2_2 off the helium droplets

    Evaluation of enzyme immunoassays in the diagnosis of camel (Camelus dromedarius) trypanosomiasis:a preliminary investigation

    Get PDF
    Three enzyme immunoassays were used for the serodiagnosis of Trypanosoma evansi in camels in the Sudan in order to evaluate their ability to discriminate between infected and non-infected animals. Two assays were used for the detection of trypanosomal antibodies, one using specific anti-camel IgG conjugate and another using a non-specific Protein A conjugate. The third assay detected the presence of trypanosomal antigens using anti-T. evansi antibodies in a double antibody sandwich assay. Inspection of the frequency distribution of assay results suggested that the ELISA for circulating trypanosomal antibodies using specific antisera and the ELISA for circulating antigens can distinguish between non-infected camels and infected camels exhibiting patent infections or not. The ELISA using Protein A conjugate to bind non-specifically to camel immunoglobulin did not appear to discriminate between infected and non-infected animals

    Metastable states of a flux line lattice studied by transport and Small Angle Neutron Scattering

    Full text link
    Flux Lines Lattice (FLL) states have been studied using transport measurements and Small Angle Neutron Scattering in low Tc_c materials. In Pb-In, the bulk dislocations in the FLL do not influence the transport properties. In Fe doped NbSe2_{2}, transport properties can differ after a Field Cooling (FC) or a Zero Field Cooling (ZFC) procedure, as previously reported. The ZFC FLL is found ordered with narrow Bragg Peaks and is linked to a linear V(I) curve and to a superficial critical current. The FC FLL pattern exhibits two Bragg peaks and the corresponding V(I) curve shows a S-shape. This can be explained by the coexistence of two ordered FLL slightly tilted from the applied field direction by different superficial currents. These currents are wiped out when the transport current is increased.Comment: accepted for publication in Phys. Rev.

    Interpretation of the angular dependence of the de Haas-van Alphen effect in MgB_2

    Full text link
    We present detailed results for the amplitude and field dependence of the de Haas-van Alphen (dHvA) signal arising from the electron-like π\pi sheet of Fermi surface in MgB_2. Our data and analysis show that the dip in dHvA amplitude when the field is close to the basal plane is caused by a beat between two very similar dHvA frequencies and not a spin-zero effect as previously assumed. Our results imply that the Stoner enhancement factors in MgB_2 are small on both the Sigma and Pi sheets.Comment: 4 pages with figures. Submitted to PR

    Meta-analysis of executive functioning in ecstasy/polydrug users

    Get PDF
    Ecstasy/3,4-methylenedioxymethamphetamine (MDMA) use is proposed to cause damage to serotonergic (5-HT) axons in humans. Therefore, users should show deficits in cognitive processes that rely on serotonin-rich, prefrontal areas of the brain. However, there is inconsistency in findings to support this hypothesis. The aim of the current study was to examine deficits in executive functioning in ecstasy users compared with controls using meta-analysis. We identified k = 39 studies, contributing 89 effect sizes, investigating executive functioning in ecstasy users and polydrug-using controls. We compared function-specific task performance in 1221 current ecstasy users and 1242 drug-using controls, from tasks tapping the executive functions – updating, switching, inhibition and access to long-term memory. The significant main effect demonstrated overall executive dysfunction in ecstasy users [standardized mean difference (SMD) = −0.18, 95% confidence interval (CI) −0.26 to −0.11, Z = 5.05, p < 0.001, I2 = 82%], with a significant subgroup effect (χ2 = 22.06, degrees of freedom = 3, p < 0.001, I2 = 86.4%) demonstrating differential effects across executive functions. Ecstasy users showed significant performance deficits in access (SMD = −0.33, 95% CI −0.46 to −0.19, Z = 4.72, p < 0.001, I2 = 74%), switching (SMD = −0.19, 95% CI −0.36 to −0.02, Z = 2.16, p < 0.05, I2 = 85%) and updating (SMD = −0.26, 95% CI −0.37 to −0.15, Z = 4.49, p < 0.001, I2 = 82%). No differences were observed in inhibitory control. We conclude that this is the most comprehensive analysis of executive function in ecstasy users to date and provides a behavioural correlate of potential serotonergic neurotoxicity

    Scaling of Berry's Phase Close to the Dicke Quantum Phase Transition

    Full text link
    We discuss the thermodynamic and finite size scaling properties of the geometric phase in the adiabatic Dicke model, describing the super-radiant phase transition for an NN qubit register coupled to a slow oscillator mode. We show that, in the thermodynamic limit, a non zero Berry phase is obtained only if a path in parameter space is followed that encircles the critical point. Furthermore, we investigate the precursors of this critical behavior for a system with finite size and obtain the leading order in the 1/N expansion of the Berry phase and its critical exponent

    Audit of antenatal clinic for high-risk obstetric patients; activity and outcomes

    Get PDF
    A specialised clinic for the antenatal care of high-risk patients was established in Cork in January 2004. It is led by 2 specialists in materno-fetal medicine and provides care for patients from a large catchment area. Small clinic numbers, specialised midwives, ready access to medical experts and fetal assessment facilities, facilitate an efficient use of resources. We report on the experience and outcomes of this clinic after the first year in operation. A database was set up to store relevant information on patients who attended the clinic in 2004. 143 patients attended. Risk categories included maternal medical disease (62%); multiple pregnancy (11%); previous poor obstetric history (10%); fetal anomaly (8%). Average gestation; 35.9 weeks, average birth weight; 2598g. Caesarean section rate; 41%. Perinatal mortality rate 67 per 1000 (uncorrected); and 20% neonates required NICU care. This approach to highrisk obstetric care resulted in favourable outcomes. The management strategy applied in Cork may be a suitable prototype for comparable areas throughout Ireland

    A simplified picture for Pi electrons in conjugated polymers : from PPP Hamiltonian to an effective molecular crystal approach

    Full text link
    An excitonic method proper to study conjugated oligomers and polymers is described and its applicability tested on the ground state and first excited states of trans-polyacetylene, taken as a model. From the Pariser-Parr-Pople Hamiltonian, we derive an effective Hamiltonian based on a local description of the polymer in term of monomers; the relevant electronic configurations are build on a small number of pertinent local excitations. The intuitive and simple microscopic physical picture given by our model supplement recent results, such as the Rice and Garstein ones. Depending of the parameters, the linear absorption appears dominated by an intense excitonic peak.Comment: 41 Pages, 6 postscript figure

    Multiple-copy state discrimination: Thinking globally, acting locally

    Full text link
    We theoretically investigate schemes to discriminate between two nonorthogonal quantum states given multiple copies. We consider a number of state discrimination schemes as applied to nonorthogonal, mixed states of a qubit. In particular, we examine the difference that local and global optimization of local measurements makes to the probability of obtaining an erroneous result, in the regime of finite numbers of copies NN, and in the asymptotic limit as N→∞N \rightarrow \infty. Five schemes are considered: optimal collective measurements over all copies, locally optimal local measurements in a fixed single-qubit measurement basis, globally optimal fixed local measurements, locally optimal adaptive local measurements, and globally optimal adaptive local measurements. Here, adaptive measurements are those for which the measurement basis can depend on prior measurement results. For each of these measurement schemes we determine the probability of error (for finite NN) and scaling of this error in the asymptotic limit. In the asymptotic limit, adaptive schemes have no advantage over the optimal fixed local scheme, and except for states with less than 2% mixture, the most naive scheme (locally optimal fixed local measurements) is as good as any noncollective scheme. For finite NN, however, the most sophisticated local scheme (globally optimal adaptive local measurements) is better than any other noncollective scheme, for any degree of mixture.Comment: 11 pages, 14 figure
    • …
    corecore