19 research outputs found

    Size-dependent filling effect of crystalline celluloses in structural engineering of composite oleogels

    Get PDF
    Oleogels are a class of solid-fat mimetics that contain a large fraction of oil. Most of these materials have low stiffness and poor oil-binding capacity at commercially viable concentrations, which limits their application in the food and cosmetic industries. To improve their mechanical behavior, we exploited the concepts of particulate-filled materials by developing oil-continuous monoglyceride composites reinforced with crystalline cellulose of various sizes. Cellulose was used as the reinforcing filler material due to its strength, biodegradability, and abundance. The composites gradually stiffened and became more brittle with a progressive increase of the cellulose weight fraction as the maximum packing fraction of fillers approached. This was manifested as an increase in the viscoelastic moduli and yield stress, consistent with the size of the filler. Based on differential scanning calorimetry, X-ray diffraction, X-ray scattering analyses, and microscopic analyses, the inert surface of crystalline celluloses provided a solid substrate for the crystallization of monoglycerides, favoring the lamellar stacking of monoglyceride molecules during the composite oleogel formation regardless of the cellulose size. The present study suggests that cellulose is a suitable bio-based filler material to obtain mechanically strong oleogels suitable for high-shear applications e.g., in food and pharmaceutical industries.Peer reviewe

    Wood lignocellulosic stabilizers : effect of their characteristics on stability and rheological properties of emulsions

    Get PDF
    Lignocellulosic materials from the forest industry have shown potential to be used as sustainable hydrocolloids to stabilize emulsions for many applications in life science and chemical industries. However, the effect of wood species and recovery method on the product’s properties and ability to stabilize emulsions of isolated lignocellulosic compounds is not well understood. Hemicelluloses, abundant lignocellulosic side stream, exhibit differences in their water solubility, anionic character, lignin content, and degree of acetylation. Here, we explored stability and rheological properties of model emulsions (5% hexadecane and 1% stabilizer, w/w) stabilized by different grades of sprucewood galactoglucomannan (GGM) and birchwood glucuronoxylan (GX) hemicelluloses. The results were compared to known soluble, insoluble, charged, and non-charged cellulosic stabilizers, namely methyl cellulose (MC), carboxymethyl cellulose (CMC), anionic- and nonionic-cellulose nanocrystals (aCNC and dCNC). The results showed that GX emulsions were highly stable compared to GGM emulsions, and that deacetylation and lignin removal markedly reduced emulsion stability of GGM. Carboxymethylation to increase anionic characters enhanced the emulsion stabilization capacity of GGM, but not that of GX. Investigating flow behaviors of emulsions indicated that hemicelluloses primarily stabilize emulsions by adsorption of insoluble particles, as their flow behaviors were similar to those of cellulose nanocrystals rather than those of soluble celluloses. Understanding the impact of the variations in composition and properties of hemicellulose stabilizers to stabilize emulsions allows tailoring of their recovery processes to obtain desirable hydrocolloids for different applications.Peer reviewe

    Dense and continuous networks of aerial hyphae improve flexibility and shape retention of mycelium composite in the wet state

    Get PDF
    The mycelium composites composed of fungal mycelium and plant substrate are a practical alternative to petroleum plastic-based foam materials. However, the effects of the physiological traits of fungus on the composites’ microscopic structure and mechanical properties remain poorly understood. Here, we compared two basidiomycetes with distinct mycelium morphology and white-decay modes. Cross-sectional observation revealed that the mycelium composites possess a core/shell structure with the shell formed of dense aerial mycelium and the core of plant particles and spongy aerial mycelium. Dense and continuous mycelium networks provided by Trametes hirsuta strengthen the mechanical properties of the composite compared to the coarse mycelium networks of Pleurotus ostreatus. In particular, the firm mycelial shell skeleton confers high flexibility and shape-retention to the composite in the wet state. This unique characteristic of the mycelium composite indicates its potentials in new industrial applications.Peer reviewe

    Time-dependent self-association of spruce galactoglucomannans depends on pH and mechanical shearing

    Get PDF
    The demand for naturally derived, functional and cost-effective raw materials for various food applications is escalating. Spruce wood is a sustainable and abundant, but underutilized source of novel hydrocolloids-galactoglucomannans (GGM). Pressurized-hot water extracted GGM with an intermediate molar mass are hypothesized to form colloidal solutions. To design superior quality products from GGM, an understanding of their colloidal stability and their potential effect in multiphasic systems is required. The present study addresses the functionality of GGM by characterizing their properties in a bi-phasic system, and for the first time, their time-dependent colloidal stability at different extrinsic conditions- pH, ionic strength and after the application of high-intensity mechanical shearing. Amongst the conditions studied, the colloidal stability of aqueous GGM solution was highly pH dependent. The results showed that an intermediate molar mass polysaccharide like GGM formed inter-/intra molecular assemblies, which grew over time, depending on the composition and processing of the aqueous medium. The molecular dispersion of GGM and their dynamic behavior was also compared to solutions of known food hydrocolloids-gum Arabic and hydroxypropylmethyl cellulose. The observed solution properties explain the hydmcolloid functionality of GGM and contribute to design of colloidal polysaccharide systems in food application.Peer reviewe

    Air oxidized activated carbon catalyst for aerobic oxidative aromatizations of N-heterocycles

    Get PDF
    A simple "reagent-free" thermal air treatment turns active carbon into a mildly oxidized material with increased quinoidic content that catalytically dehydrogenates saturated N-heterocycles to the corresponding aromatic compounds. Thermal decarboxylation improves the activity of the catalyst further, making it overall more efficient compared to other widely used carbocatalysts such as oxidized carbon nanotubes, graphene oxide and untreated active carbons. The substrate scope covers 1,2,3,4-tetrahydroquinolines (THQ), 1,2,3,4-tetrahydro-beta-carbolines and related N-heterocyclic structures. The developed protocol also successfully dehydrogenates 3-(cyclohexenyl)indoles to 3-aryl indoles, opening a concise transition metal-free approach to (hetero)biaryls as exemplified with the synthesis of the core structure of progesterone receptor antagonist. Hammett plots, deuterium KIE measurements and computations at DFT level suggest that bimolecular hydride transfer mechanism is more likely to operate between THQs and the o-quinoidic sites of the catalyst, than the addition-elimination hemiaminal route. Comparison of structural parameters and catalytic performance of various oxidized carbon materials, prepared by different oxidative and optional post treatments, revealed that quinoidic content and surface area correlate with the obtained yields, while carboxylic acid content has a clear inhibiting effect for the studied oxidative dehydrogenations (ODHs). The carbocatalyst itself can be prepared from inexpensive and environmentally benign starting materials and its catalytic activity can be enhanced by a simple thermal oxidation in air that produces no reagent waste. Furthermore, oxygen is used as terminal oxidant, and the carbocatalyst is recyclable at least six times without a notable loss of activity.Peer reviewe

    Interfacial Polyelectrolyte Complex Spinning of Cellulose Nanofibrils for Advanced Bicomponent Fibers

    No full text
    Fiber spinning of anionic TEMPO-oxidized cellulose (TOCN) nanofibrils with polycations by interfacial polyelectrolyte complexation is demonstrated. The formed fibers were mostly composed of cellulose nanofibrils and the polycations were a minor constituent, leading to yield and ultimate strengths of ca. 100 MPa and ca. 200 MPa, and Young’s modulus of ca. 15 GPa. Stretching of the as-formed wet filaments of TOCN/polycation by 20% increased the Young’s modulus, yield strength, and ultimate tensile strength by approximately 45, 36, and 26%, respectively. Importantly, feasibility of compartmentalized wound bicomponent fibers by simultaneous spinning of two fibers of different compositions and entwining them together was shown. This possibility was further exploited to demonstrate reversible shape change of a bicomponent fiber directly by humidity change, and indirectly by temperature changes based on thermally dependent humidity absorption. The demonstrated route for TOCN-based fiber preparation is expected to open up new avenues in the application of nanocelluloses in advanced fibrous materials, crimping, and responsive smart textiles.Peer reviewe

    Adsorption study on the formation of interfacial layers based on birch glucuronoxylans

    No full text
    Glucuronoxylans (GX), particularly crude fractions obtained by pressurized hot water extraction of birch wood, act as potent emulsifiers and stabilizers against physical separation and lipid oxidation. Herein, we studied the adsorption of GX on hydrophobic interfaces to correlate their multicomponent character towards the formation of interfacial layers in emulsions. Dynamic interfacial tension (DIFT) and quartz crystal microgravimetry with dissipation monitoring (QCM-D) were applied to various GX fractions and the results compared with those from cellulose-based emulsifiers. The roles of residual lignin and polysaccharides are discussed considering the formation of interfacial layers during emulsification. The DIFT of the different GXs reached quasi-equilibrium faster as the lignin concentration increased, implying a correlation between the rate of adsorption and the residual lignin content. The effect of NaCl addition was more pronounced in polysaccharide-rich fractions, indicating that the polysaccharide fraction modulated the effect of ionic strength. QCM-D showed that despite the fast adsorption exhibited by the lignin-rich GX extract in the DIFT curves, the adsorbed materials were lightweight, suggesting that the polysaccharide fraction built the bulk of the interfacial layer. These results provide a foundation towards understanding the role of GX in interfacial stabilization beyond traditional plant-based counterparts.Peer reviewe
    corecore