8,397 research outputs found

    Experimental Outlook for the Pentaquark

    Full text link
    A critical look is taken at both positive and null evidence for the Θ+\Theta^+ pentaquark. Potential problems with experiments will be discussed and the question of what conclusion can be drawn from both the positive and the null results is examined. First the question of existence of the Θ+\Theta^+ pentaquark is considered, followed by a discussion of new experiments that are either planned or in progress to answer questions about its mass, width and isospin. Finally, indirect evidence for the parity of the Θ+\Theta^+ is examined, and suggestions for experiments to measure its parity directly are given.Comment: MESON2004 conference proceedings, 10 pages, 1 figur

    Research at the University of Kentucky Accelerator Laboratory

    Get PDF
    The Department of Physics and Astronomy at the University of Kentucky operates a 7-MV CN Van de Graaff accelerator that produces primary beams of protons, deuterons, and helium ions. An in-terminal pulsing and bunching system operates at 1.875 MHz and is capable of providing 1 ns beam bunches at an average current of several microamperes. Nearly all ongoing research programs involve secondary pulsed neutrons produced with gas cells containing deuterium or tritium, as well as with a variety of solid targets. Most experiments are performed at a target station positioned over a deep pit, so as to reduce the background created by backscattered neutrons. Recent experiments will be described; these include: measurements of n-p scattering total cross sections from En= 90 to 1800 keV to determine the n-p effective range parameter; the response of the plastic scintillator BC-418 below 1 MeV to low-energy recoil protons; n-p radiative capture cross sections important for our understanding of nucleosynthesis approximately 2 minutes after the occurrence of the Big Bang; γ-ray spectroscopy following inelastic neutron scattering to study nuclear structure relevant to double-β decay and to understand the role of phonon-coupled excitations in weakly deformed nuclei; and measurements of neutron elastic and inelastic scattering cross sections for nuclei that are important for energy production and for our global understanding of the interaction of neutrons with matter

    The Keck/OSIRIS Nearby AGN Survey (KONA) I. The Nuclear K-band Properties of Nearby AGN

    Full text link
    We introduce the Keck Osiris Nearby AGN survey (KONA), a new adaptive optics-assisted integral-field spectroscopic survey of Seyfert galaxies. KONA permits at ~0.1" resolution a detailed study of the nuclear kinematic structure of gas and stars in a representative sample of 40 local bona fide active galactic nucleus (AGN). KONA seeks to characterize the physical processes responsible for the coevolution of supermassive black holes and galaxies, principally inflows and outflows. With these IFU data of the nuclear regions of 40 Seyfert galaxies, the KONA survey will be able to study, for the first time, a number of key topics with meaningful statistics. In this paper we study the nuclear K-band properties of nearby AGN. We find that the luminosities of the unresolved Seyfert 1 sources at 2.1 microns are correlated with the hard X-ray luminosities, implying that the majority of the emission is non-stellar. The best-fit correlation is logLK = 0.9logL2-10 keV + 4 over 3 orders of magnitude in both K-band and X-ray luminosities. We find no strong correlation between 2.1 microns luminosity and hard X-ray luminosity for the Seyfert 2 galaxies. The spatial extent and spectral slope of the Seyfert 2 galaxies indicate the presence of nuclear star formation and attenuating material (gas and dust), which in some cases is compact and in some galaxies extended. We detect coronal-line emission in 36 galaxies and for the first time in five galaxies. Finally, we find 4/20 galaxies that are optically classified as Seyfert 2 show broad emission lines in the near-IR, and one galaxy (NGC 7465) shows evidence of a double nucleus.Comment: Accepted for publication in ApJ, 19 pages with 18 figure

    Exotic hadrons from dynamical clustering of quarks in ultrarelativistic heavy ion collisions

    Full text link
    Results from a model study on the formation of exotic quark clusters at the hadronization stage of a heavy ion collision are presented. The dynamical quark molecular dynamics (qMD) model which is used is sketched, and results for exotica made of up to six (anti-)quarks are shown. The second part focuses on pentaquarks. The rapidity distribution are shown, and the distribution of strangeness is found to yield an indicator of thermalization and homogenisation of the deconfined quark system. Relative Theta^+ yields are found to be lower than thermal model estimates.Comment: 4 pages, 5 figures, to appear in the proceedings of Strangeness in Quark Matter 2004 (SQM2004), Cape Town, South Africa, 15-20 September 200

    Design and Implementation of a Python-Based Active Network Platform for Network Management and Control

    Get PDF
    Active networks can provide lightweight solutions for network management-related tasks. Specific requirements for these tasks have to be met, while at the same time several issues crucial for active networks can be solved rather easily. A system addressing especially network management was developed and implemented. It provides a flexible environment for rapid development using the platform-independent programming language Python, and also supports platform dependent native code. By allowing to add new functions to network devices it improves the performance of Internet routers, and simplifies the introduction and maintenance of new services

    On the degrees of freedom of a semi-Riemannian metric

    Full text link
    A semi-Riemannian metric in a n-manifold has n(n-1)/2 degrees of freedom, i.e. as many as the number of components of a differential 2-form. We prove that any semi-Riemannian metric can be obtained as a deformation of a constant curvature metric, this deformation being parametrized by a 2-for

    A wide band gap metal-semiconductor-metal nanostructure made entirely from graphene

    Full text link
    A blueprint for producing scalable digital graphene electronics has remained elusive. Current methods to produce semiconducting-metallic graphene networks all suffer from either stringent lithographic demands that prevent reproducibility, process-induced disorder in the graphene, or scalability issues. Using angle resolved photoemission, we have discovered a unique one dimensional metallic-semiconducting-metallic junction made entirely from graphene, and produced without chemical functionalization or finite size patterning. The junction is produced by taking advantage of the inherent, atomically ordered, substrate-graphene interaction when it is grown on SiC, in this case when graphene is forced to grow over patterned SiC steps. This scalable bottomup approach allows us to produce a semiconducting graphene strip whose width is precisely defined within a few graphene lattice constants, a level of precision entirely outside modern lithographic limits. The architecture demonstrated in this work is so robust that variations in the average electronic band structure of thousands of these patterned ribbons have little variation over length scales tens of microns long. The semiconducting graphene has a topologically defined few nanometer wide region with an energy gap greater than 0.5 eV in an otherwise continuous metallic graphene sheet. This work demonstrates how the graphene-substrate interaction can be used as a powerful tool to scalably modify graphene's electronic structure and opens a new direction in graphene electronics research.Comment: 11 pages, 7 figure

    New Measurements of the Motion of the Zodiacal Dust

    Full text link
    Using the Wisconsin H-Alpha Mapper (WHAM), we have measured at high spectral resolution and high signal-to-noise the profile of the scattered solar Mg I 5184 absorption line in the zodiacal light. The observations were carried out toward 49 directions that sampled the ecliptic equator from solar elongations of 48\dg (evening sky) to 334\dg (morning sky) plus observations near +47\dg and +90\dg ecliptic latitude. The spectra show a clear prograde kinematic signature that is inconsistent with dust confined to the ecliptic plane and in circular orbits influenced only by the sun's gravity. In particular, the broadened widths of the profiles, together with large amplitude variations in the centroid velocity with elongation angle, indicate that a significant population of dust is on eccentric orbits. In addition, the wide, flat-bottomed line profile toward the ecliptic pole indicates a broad distribution of orbital inclinations extending up to about 30\dg - 40\dg with respect to the ecliptic plane. The absence of pronounced asymmetries in the shape of the profiles limits the retrograde population to less than 10% of the prograde population and also places constraints on the scattering phase function of the particles. These results do not show the radial outflow or evening--morning velocity amplitude asymmetry reported in some earlier investigations. The reduction of the spectra included the discovery and removal of extremely faint, unidentified terrestrial emission lines that contaminate and distort the underlying Mg I profile. This atmospheric emission is too weak to have been seen in earlier, lower signal-to-noise observations, but it probably affected the line centroid measurements of previous investigations.Comment: 24 pages, 8 figures, 1 table, to appear in ApJ v612; figures appear low-res only on scree

    Silicon intercalation into the graphene-SiC interface

    Full text link
    In this work we use LEEM, XPEEM and XPS to study how the excess Si at the graphene-vacuum interface reorders itself at high temperatures. We show that silicon deposited at room temperature onto multilayer graphene films grown on the SiC(000[`1]) rapidly diffuses to the graphene-SiC interface when heated to temperatures above 1020. In a sequence of depositions, we have been able to intercalate ~ 6 ML of Si into the graphene-SiC interface.Comment: 6 pages, 8 figures, submitted to PR

    Global assessment of nitrogen deposition effects on terrestrial plant diversity : a synthesis

    Get PDF
    Atmospheric nitrogen (N) deposition is it recognized threat to plant diversity ill temperate and northern parts of Europe and North America. This paper assesses evidence from field experiments for N deposition effects and thresholds for terrestrial plant diversity protection across a latitudinal range of main categories of ecosystems. from arctic and boreal systems to tropical forests. Current thinking on the mechanisms of N deposition effects on plant diversity, the global distribution of G200 ecoregions, and current and future (2030) estimates of atmospheric N-deposition rates are then used to identify the risks to plant diversity in all major ecosystem types now and in the future. This synthesis paper clearly shows that N accumulation is the main driver of changes to species composition across the whole range of different ecosystem types by driving the competitive interactions that lead to composition change and/or making conditions unfavorable for some species. Other effects such its direct toxicity of nitrogen gases and aerosols long-term negative effects of increased ammonium and ammonia availability, soil-mediated effects of acidification, and secondary stress and disturbance are more ecosystem, and site-specific and often play a supporting role. N deposition effects in mediterranean ecosystems have now been identified, leading to a first estimate of an effect threshold. Importantly, ecosystems thought of as not N limited, such as tropical and subtropical systems, may be more vulnerable in the regeneration phase. in situations where heterogeneity in N availability is reduced by atmospheric N deposition, on sandy soils, or in montane areas. Critical loads are effect thresholds for N deposition. and the critical load concept has helped European governments make progress toward reducing N loads on sensitive ecosystems. More needs to be done in Europe and North America. especially for the more sensitive ecosystem types. including several ecosystems of high conservation importance. The results of this assessment Show that the Vulnerable regions outside Europe and North America which have not received enough attention are ecoregions in eastern and Southern Asia (China, India), an important part of the mediterranean ecoregion (California, southern Europe). and in the coming decades several subtropical and tropical parts of Latin America and Africa. Reductions in plant diversity by increased atmospheric N deposition may be more widespread than first thought, and more targeted Studies are required in low background areas, especially in the G200 ecoregions
    corecore