885 research outputs found

    Investigation of Supercritical Water Phenomena for Space and Extraterrestrial Application

    Get PDF
    The cost of carrying or resupplying life support resources for long duration manned space exploration missions such as a mission to Mars is prohibitive and requires the development of suitable recycling technologies. Supercritical Water Oxidation (SCWO) has been identified as an attractive candidate for these extended missions because (i) pre-drying of wet waste streams is not required, (ii) product streams are relatively benign, microbially inert, and easily reclaimed, (iii) waste conversion is complete and relatively fast, and (iv) with proper design and operation, reactions can be self-sustaining. Initial work in this area at NASA was carried out at the Ames Research Center in the 1990 s with a focus on understanding the linkages between feed stock preparation (i.e., particle size and distribution) of cellulosic based waste streams and destruction rates under a range of operating temperatures and pressures. More recently, work in SCWO research for space and extra-terrestrial application has been performed at NASA s Glenn Research Center where various investigations, with a particular focus in the gravitational effects on the thermo-physical processes occurring in the bulk medium, have been pursued. In 2010 a collaborative NASA/CNES (the French Space Agency) experiment on the critical transition of pure water was conducted in the long duration microgravity environment on the International Space Station (ISS). A follow-on experiment, to study the precipitation of salt in sub-critical, trans-critical and supercritical water is scheduled to be conducted on the ISS in 2013. This paper provides a brief history of NASA s earlier work in SCWO, discusses the potential for application of SCWO technology in extended space and extraterrestrial missions, describes related research conducted on the ISS, and provides a list of future research activities to advance this technology in both terrestrial and extra-terrestrial applications

    The X-ray Properties of Optically Selected Clusters of Galaxies

    Get PDF
    We present the results of Chandra and Suzaku X-ray observations of nine moderate-redshift (0.16 < z < 0.42) clusters discovered via the Red-sequence Cluster Survey (RCS). Surface brightness profiles are fitted to beta models, gas masses are determined, integrated spectra are extracted within R2500, and X-ray temperatures and luminosities are inferred. The Lx-Tx relationship expected from self-similar evolution is tested by comparing this sample to our previous X-ray investigation of nine high-redshift (0.6 < z < 1.0) optically selected clusters. We find that optically selected clusters are systematically less luminous than X-ray selected clusters of similar X-ray temperature at both moderate and high-z. We are unable to constrain evolution in the Lx-Tx relation with these data, but find it consistent with no evolution, within relatively large uncertainties. To investigate selection effects, we compare the X-ray properties of our sample to those of clusters in the representative X-ray selected REXCESS sample, also determined within R2500. We find that while RCS cluster X-ray properties span the entire range of those of massive clusters selected by other methods, their average X-ray properties are most similar to those of dynamically disturbed X-ray selected clusters. This similarity suggests that the true cluster distribution might contain a higher fraction of disturbed objects than are typically detected in X-ray selected surveys.Comment: 13 pages, 5 figures; accepted for publication in MNRAS. Figure quality reduced to comply with arXiv file size requirement

    Scalable Resource Control in Active Networks

    Get PDF
    The increased complexity of the service model relative to store-and-forward routers has made resource management one of the paramount concerns in active networking research and engineering. In this paper,we address two major challenges in scaling resource management-to-many-node active networks. The first is the use of market mechanisms and trading amongst nodes and programs with varying degrees of competition and cooperation to provide a scalable approach to managing active network resources. The second is the use of a trust-management architecture to ensure that the participants in the resource management marketplace have a policy-driven "rule of law" in which marketplace decisions can be made and relied upon. We have used lottery scheduling and the Keynote trust-management system for our implementation, for which we provide some initial performance indications

    Neodymium Oxide Doped Melt Textured YBa₂Cu₃O₇₋ₓ Single Crystals

    Get PDF
    Processing, microstructure and property relationships in neodymium oxide doped high temperature superconducting YBa2Cu3O7-x (Y123) were investigated. It has been observed that a small amount (~ 0.25 - 1 mol%) of Nd2O3 results in the formation of nanosized secondary phases which may have a significant effect on the superconducting properties of melt textured Y123 single crystals. It was further observed that addition of Nd2O3 greater than 1 mol% leads to multiple nucleation during solidification of Y123 and results in polycrystalline samples. Melt textured single crystals of Y123 with \u3c 1 mol% were successfully grown and characterized with respect to microstructural development and superconducting properties

    External Enrichment of Minihalos by the First Supernovae

    Get PDF
    Recent high-resolution simulations of early structure formation have shown that externally enriched halos may form some of the first metal enriched stars. This study utilizes a 1 comoving Mpc3^3 high-resolution simulation to study the enrichment process of metal-enriched halos down to z=9.3z=9.3. Our simulation uniquely tracks the metals ejected from Population III stars, and we use this information to identify the origin of metals within metal-enriched halos. These halos show a wide range of metallicities, but we find that the source of metals for ≳\gtrsim 50\% of metal-enriched halos is supernova explosions of Population III stars occuring outside their virial radii. The results presented here indicate that external enrichment by metal-free stars dominates the enrichment process of halos with virial mass below 106 M⊙10^{6}\,M_\odot down to z=9.3z=9.3. Despite the prevalence of external enrichment in low mass halos, Pop II stars forming due to external enrichment are rare because of the small contribution of low-mass halos to the global star formation rate combined with low metallicities towards the center of these halos resulting from metal ejecta from external sources mixing from the outside-in. The enriched stars that do form through this process have absolute metallicities below 10−3 Z⊙10^{-3}\,Z_\odot. We also find that the fraction of externally enriched halos increases with time, ∼90%\sim 90\% of halos that are externally enriched have Mvir<106 M⊙M_\mathrm{vir} < 10^6\,M_\odot, and that pair-instability supernovae contribute the most to the enrichment of the IGM as a whole and are thus are the predominant supernova type contributing to the external enrichment of halos.Comment: 15 pages, 12 figures, Accepted for publication in Ap

    Electron Hopping Conductivity and Vapor Sensing Properties of Flexible Network Polymer Films of Metal Nanoparticles

    Get PDF
    Films of monolayer protected Au clusters (MPCs) with mixed alkanethiolate and ω-carboxylate alkanethiolate monolayers, linked together in a network polymer by carboxylate-Cu2+-carboxylate bridges, exhibit electronic conductivities (σEL) that vary with both the numbers of methylene segments in the ligands and the bathing medium (N2, liquid or vapor). A chainlength-dependent swelling/contraction of the film\u27s internal structure is shown to account for changes in σEL. The linker chains appear to have sufficient flexibility to collapse and fold with varied degrees of film swelling or dryness. Conductivity is most influenced (exponentially dependent) by the chainlength of the nonlinker (alkanethiolate) ligands, a result consistent with electron tunneling through the alkanethiolate chains and nonbonded contacts between those chains on individual, adjacent MPCs. The σEL results concur with the behavior of UV−vis surface plasmon adsorption bands, which are enhanced for short nonlinker ligands and when the films are dry. The film conductivities respond to exposure to organic vapors, decreasing in electronic conductivity and increasing in mass (quartz crystal microgravimetry, QCM). In the presence of organic vapor, the flexible network of linked nanoparticles allows for a swelling-induced alteration in either length or chemical nature of electron tunneling pathways or both

    Dosimetric Consequences of 3D Versus 4D PET/CT for Target Delineation of Lung Stereotactic Radiotherapy

    Get PDF
    Introduction:Lung tumor delineation is frequently performed using 3D positron emission tomography (PET)/computed tomography (CT), particularly in the radiotherapy treatment planning position, by generating an internal target volume (ITV) from the slow acquisition PET. We investigate the dosimetric consequences of stereotactic ablative body radiotherapy (SABR) planning on 3D PET/CT in comparison with gated (4D) PET/CT.Methods:In a prospective clinical trial, patients with lung metastases were prescribed 26 Gy single-fraction SABR to the covering isodose. Contemporaneous 3D PET/CT and 4D PET/CT was performed in the same patient position. An ITV was generated from each data set, with the planning target volume (PTV) being a 5-mm isotropic expansion. Dosimetric parameters from the SABR plan derived using the 3D volumes were evaluated against the same plan applied to 4D volumes.Results:Ten lung targets were evaluated. All 3D plans were successfully optimized to cover 99% of the PTV by the 26 Gy prescription. In all cases, the calculated dose delivered to the 4D target was less than the expected dose to the PTV based on 3D planning. Coverage of the 4D-PTV by the prescription isodose ranged from 74.48% to 98.58% (mean of 90.05%). The minimum dose to the 4D-ITV derived by the 3D treatment plan (mean = 93.11%) was significantly lower than the expected dose to ITV based on 3D PET/CT calculation (mean = 111.28%), p < 0.01. In all but one case, the planned prescription dose did not cover the 4D-PET/CT derived ITV.Conclusions:Target delineation using 3D PET/CT without additional respiratory compensation techniques results in significant target underdosing in the context of SABR
    • …
    corecore