192 research outputs found

    Fabrication, characterisation and performance of hydrophilic and super-hydrophilic silica as cell culture surfaces

    Get PDF
    We demonstrate a straightforward procedure for the controlled formation of silica films on tissue culture polystyrene (PS) surfaces. The films were formed by sequentially treating PS with polyaniline, glutaric dialdehyde and protein prior to silica formation. The films could be tailored to exhibit superhydrophilicity (contact angle < 5°) which was retained for more than two months under ambient conditions. Both hydrophilic and super-hydrophilic silica coated surfaces were suitable for the culture of an adherent human melanoma cell line. Proliferation, toxicity and adhesion assays were used to compare cell behaviour. Cells on the silica surfaces showed enhanced adhesion and comparable rates of cell proliferation as compared to cells grown on conventional tissue culture plastic. The results obtained can be understood by considering the surface properties of the different materials and the ability of the silica coated surfaces to adsorb significantly higher levels of serum proteins from the growth medium. One of the outcomes of this study is a re-evaluation of the hydrophobicity/hydrophilicity characteristics required for good cell growth and the possibility of designing new tissue culture materials capable of greater control over cell populations

    Triethylphosphite as a network forming agent enhances in-vitro biocompatibility and corrosion protection of hybrid organic-inorganic sol-gel coatings for Ti6Al4V alloys

    Get PDF
    The biocompatibility and life of metallic implants can be enhanced through improving the biocompatibility and corrosion protection characteristics of the coatings used with these materials. In this study, triethylphosphite (TEP) was used to introduce phosphorus into organic-inorganic hybrid silica based sol gel coatings prepared using γ-methacryloxypropyltrimethoxysilane and tetramethylorthosilicate. Addition of TEP dramatically increased the rate of intermolecular condensation and resulted in materials showing greater cross linking. Protein (fibrinogen) uptake, osteoblast in vitro biocompatibility and corrosion resistance was enhanced in coatings containing TEP. Although higher concentrations of phosphorus supported the greatest improvement in biocompatibility, a compromise in the phosphorus concentration used would be required if corrosion resistance was most desirable parameter for optimisation. Films prepared by dip coating on Ti6Al4V alloys from these sols offer a promising alternative to wholly metallic prostheses

    Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons

    Get PDF
    The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions

    Primary care provider perceptions of intake transition records and shared care with outpatient cardiac rehabilitation programs

    Get PDF
    Abstract Background While it is recommended that records are kept between primary care providers (PCPs) and specialists during patient transitions from hospital to community care, this communication is not currently standardized. We aimed to assess the transmission of cardiac rehabilitation (CR) program intake transition records to PCPs and to explore PCPs' needs in communication with CR programs and for intake transition record content. Method 144 PCPs of consenting enrollees from 8 regional and urban Ontario CR programs participated in this cross-sectional study. Intake transition records were tracked from the CR program to the PCP's office. Sixty-six PCPs participated in structured telephone interviews. Results Sixty-eight (47.6%) PCPs received a CR intake transition record. Fifty-eight (87.9%) PCPs desired intake transition records, with most wanting it transmitted via fax (n = 52, 78.8%). On a 5-point Likert scale, PCPs strongly agreed that the CR transition record met their needs for providing patient care (4.32 ± 0.61), with 48 (76.2%) reporting that it improved their management of patients' cardiac risk. PCPs rated the following elements as most important to include in an intake transition record: clinical status (4.67 ± 0.64), exercise test results (4.61 ± 0.52), and the proposed patient care plan (4.59 ± 0.71). Conclusions Less than half of intake transition records are reaching PCPs, revealing a large gap in continuity of patient care. PCP responses should be used to develop an evidence-based intake transition record, and procedures should be implemented to ensure high-quality transitional care

    Measurement of Contractile Stress Generated by Cultured Rat Muscle on Silicon Cantilevers for Toxin Detection and Muscle Performance Enhancement

    Get PDF
    Background: To date, biological components have been incorporated into MEMS devices to create cell-based sensors and assays, motors and actuators, and pumps. Bio-MEMS technologies present a unique opportunity to study fundamental biological processes at a level unrealized with previous methods. The capability to miniaturize analytical systems enables researchers to perform multiple experiments in parallel and with a high degree of control over experimental variables for high-content screening applications.Methodology/Principal Findings: We have demonstrated a biological microelectromechanical system (BioMEMS) based on silicon cantilevers and an AFM detection system for studying the physiology and kinetics of myotubes derived from embryonic rat skeletal muscle. It was shown that it is possible to interrogate and observe muscle behavior in real time, as well as selectively stimulate the contraction of myotubes with the device. Stress generation of the tissue was estimated using a modification of Stoney's equation. Calculated stress values were in excellent agreement with previously published results for cultured myotubes, but not adult skeletal muscle. Other parameters such as time to peak tension (TPT), the time to half relaxation (KRT) were compared to the literature. It was observed that the myotubes grown on the BioMEMS device, while generating stress magnitudes comparable to those previously published, exhibited slower TPT and KRT values. However, growth in an enhanced media increased these values. From these data it was concluded that the myotubes cultured on the cantilevers were of an embryonic phenotype. The system was also shown to be responsive to the application of a toxin, veratridine.Conclusions/Significance: The device demonstrated here will provide a useful foundation for studying various aspects of muscle physiology and behavior in a controlled high-throughput manner as well as be useful for biosensor and drug discovery applications
    corecore