17 research outputs found

    Spatial characteristics of the midnight temperature maximum and equatorial spread F from multi-instrument and magnetically conjugate observations

    Get PDF
    The upper atmosphere, a region above ~85 km called the ionosphere and thermosphere, has been studied extensively for over one hundred years. Measurements were often considered in isolation, but today, advances in technology and ground-based distributed arrays have allowed concurrent multi-instruments measurements. In this dissertation, I combine measurements from all-sky imagers (ASIs), coherent scatter radars, incoherent scatter radars (ISRs), and Fabry-Perot interferometers (FPIs). I focus on two phenomena, the midnight temperature maximum (MTM) and equatorial spread F (ESF), using observations from equatorial to mid-latitudes. The spatial characteristics of these phenomena are not fully understood. I combine observations at various latitudes and longitudes to extend MTM detection to mid-latitudes. I present the first simultaneous detections of the MTM at multiple altitudes and latitudes over North America and the first observations below the F-region peak using the Millstone Hill Observatory ISR in a south pointing, low-elevation mode. The MTM can also be observed with an ASI and I present concurrent measurements of the MTM with an ASI and ISR. The Whole Atmosphere Model, a global circulation model, was found to be consistent with these observations. This further verifies that the MTM is partially created by lower atmospheric tides, demonstrating coupling between the lower and upper atmosphere. In addition to the MTM, I investigate different aspects of ESF using ASIs concurrently with other instruments. I compare various scale sizes (sub-meter to kilometers) using coherent scatter radar and an ASI and conclude that the lower hybrid drift instability causes radar echoes to occur preferentially on the western wall of large-scale depletions. The source of day-to-day variability in ESF is not fully known but I show that one driver may be large-scale wave structures (~400 km) that modulate the development of ESF. Finally, I compare concurrent observations of ESF plasma depletions with ASIs at magnetically-conjugate foot points and show how the magnitude and structure of the Earth’s magnetic field is responsible for differences in the morphology and velocity of these depletions. In summary, I have used multi-instrument observations of ESF and the MTM to provide a deeper understanding of the dynamics of the upper atmosphere

    Multi-Instrumented Observations of the Equatorial F-Region During June Solstice: Large-Scale Wave Structures and Spread-F

    Get PDF
    Typical equatorial spread-F events are often said to occur during post-sunset, equinox conditions in most longitude sectors. Recent studies, however, have found an unexpected high occurrence of ionospheric F-region irregularities during June solstice, when conditions are believed to be unfavorable for the development of plasma instabilities responsible for equatorial spread-F (ESF). This study reports new results of a multi-instrumented investigation with the objective to better specify the occurrence of these atypical June solstice ESF in the American sector and better understand the conditions prior to their development. We present the first observations of June solstice ESF events over the Jicamarca Radio Observatory (11.95° S, 76.87° W, ∼ 1° dip latitude) made by a 14-panel version of the Advanced Modular Incoherent Scatter Radar system (AMISR-14). The observations were made between July 11 and August 4, 2016, under low solar flux conditions and in conjunction with dual-frequency GPS, airglow, and digisonde measurements. We found echoes occurring in the pre-, post-, and both pre- and post-midnight sectors. While at least some of these June solstice ESF events could have been attributed to disturbed electric fields, a few events also occurred during geomagnetically quiet conditions. The late appearance (22:00 LT or later) of three of the observed events, during clear-sky nights, provided a unique opportunity to investigate the equatorial bottomside F-region conditions, prior to ESF, using nighttime airglow measurements. We found that the airglow measurements (630 nm) made by a collocated all-sky camera show the occurrence of ionospheric bottomside F-region perturbations prior to the detection of ESF echoes in all three nights. The airglow fluctuations appear as early as 1 hour prior to radar echoes, grow in amplitude, and then coincide with ESF structures observed by AMISR-14 and GPS TEC measurements. They also show some of the features of the so-called large-scale wave structures (LSWS) that have been detected, previously, using other types of observations and have been suggested to be precursors of ESF. The bottomside fluctuations have zonal spacings between 300 and 500 km, are aligned with the magnetic meridian, and extend at least a few degrees in magnetic latitude

    The development of a HAMstring InjuRy (HAMIR) index to mitigate injury risk through innovative imaging, biomechanics, and data analytics : Protocol for an observational cohort study

    Get PDF
    Background The etiology of hamstring strain injury (HSI) in American football is multi-factorial and understanding these risk factors is paramount to developing predictive models and guiding prevention and rehabilitation strategies. Many player-games are lost due to the lack of a clear understanding of risk factors and the absence of effective methods to minimize re-injury. This paper describes the protocol that will be followed to develop the HAMstring InjuRy (HAMIR) index risk prediction models for HSI and re-injury based on morphological, architectural, biomechanical and clinical factors in National Collegiate Athletic Association Division I collegiate football players. Methods A 3-year, prospective study will be conducted involving collegiate football student-athletes at four institutions. Enrolled participants will complete preseason assessments of eccentric hamstring strength, on-field sprinting biomechanics and muscle–tendon volumes using magnetic-resonance imaging (MRI). Athletic trainers will monitor injuries and exposure for the duration of the study. Participants who sustain an HSI will undergo a clinical assessment at the time of injury along with MRI examinations. Following completion of structured rehabilitation and return to unrestricted sport participation, clinical assessments, MRI examinations and sprinting biomechanics will be repeated. Injury recurrence will be monitored through a 6-month follow-up period. HAMIR index prediction models for index HSI injury and re-injury will be constructed. Discussion The most appropriate strategies for reducing risk of HSI are likely multi-factorial and depend on risk factors unique to each athlete. This study will be the largest-of-its-kind (1200 player-years) to gather detailed information on index and recurrent HSI, and will be the first study to simultaneously investigate the effect of morphological, biomechanical and clinical variables on risk of HSI in collegiate football athletes. The quantitative HAMIR index will be formulated to identify an athlete’s propensity for HSI, and more importantly, identify targets for injury mitigation, thereby reducing the global burden of HSI in high-level American football players. Trial Registration The trial is prospectively registered on ClinicalTrials.gov (NCT05343052; April 22, 2022)

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    A Possible Explanation of Interhemispheric Asymmetry of Equatorial Plasma Bubbles in Airglow Images

    Get PDF
    Equatorial plasma bubbles resulting from equatorial spread urn:x-wiley:jgra:media:jgra55597:jgra55597-math-0002 are well known to be aligned along the Earth's geomagnetic fields. During the geomagnetic storm on 17 March 2015, all‐sky airglow observations from Tirunelveli (8.7°N, 77.8°E, 1.7°N dip latitude) showed an apparent interhemispheric asymmetry in the tilt of the equatorial plasma bubbles. In this work we further investigate this case and provide a possible explanation for the asymmetry. We suggest that a variation in the altitude of the airglow layer across the image can cause the observed asymmetry. If the airglow layer is at a higher altitude in the northern portion of the image, then this would explain the observed asymmetry. This variation in the airglow layer can be caused by a variation in the height of the ionosphere. We show through modeling and ionosonde observations that it is likely that there is a variation in the airglow altitude within the field of view of the images on this night
    corecore