25 research outputs found

    Regional differentiation and post-glacial expansion of the Atlantic silverside, Menidia menidia, an annual fish with high dispersal potential

    Get PDF
    The coastal marine environment of the Northwest Atlantic contains strong environmental gradients that create distinct marine biogeographic provinces by limiting dispersal, recruitment, and survival. This region has also been subjected to numerous Pleistocene glacial cycles, resulting in repeated extirpations and recolonizations in northern populations of marine organisms. In this study, we examined patterns of genetic structure and historical demography in the Atlantic silverside, Menidia menidia, an annual marine fish with high dispersal potential but with well-documented patterns of clinal phenotypic adaptation along the environmental gradients of the Northwest Atlantic. Contrary to previous studies indicating genetic homogeneity that should preclude regional adaptation, results demonstrate subtle but significant (F(ST) = 0.07; P < 0.0001) genetic structure among three phylogeographic regions that partially correspond with biogeographic provinces, suggesting regional limits to gene flow. Tests for non-equilibrium population dynamics and latitudinal patterns in genetic diversity indicate northward population expansion from a single southern refugium following the last glacial maximum, suggesting that phylogeographic and phenotypic patterns have relatively recent origins. The recovery of phylogeographic structure and the partial correspondence of these regions to recognized biogeographic provinces suggest that the environmental gradients that shape biogeographic patterns in the Northwest Atlantic may also limit gene flow in M. menidia, creating phylogeographic structure and contributing to the creation of latitudinal phenotypic clines in this species. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00227-010-1577-3) contains supplementary material, which is available to authorized users

    Offshore wind energy development: Research priorities for sound and vibration effects on fishes and aquatic invertebrates

    Get PDF
    Author Posting. © Acoustical Society of America, 2022. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 151(1), (2022): 205–215, https://doi.org/10.1121/10.0009237.There are substantial knowledge gaps regarding both the bioacoustics and the responses of animals to sounds associated with pre-construction, construction, and operations of offshore wind (OSW) energy development. A workgroup of the 2020 State of the Science Workshop on Wildlife and Offshore Wind Energy identified studies for the next five years to help stakeholders better understand potential cumulative biological impacts of sound and vibration to fishes and aquatic invertebrates as the OSW industry develops. The workgroup identified seven short-term priorities that include a mix of primary research and coordination efforts. Key research needs include the examination of animal displacement and other behavioral responses to sound, as well as hearing sensitivity studies related to particle motion, substrate vibration, and sound pressure. Other needs include: identification of priority taxa on which to focus research; standardization of methods; development of a long-term highly instrumented field site; and examination of sound mitigation options for fishes and aquatic invertebrates. Effective assessment of potential cumulative impacts of sound and vibration on fishes and aquatic invertebrates is currently precluded by these and other knowledge gaps. However, filling critical gaps in knowledge will improve our understanding of possible sound-related impacts of OSW energy development to populations and ecosystems.Support for this project was provided by New York State Energy Research and Development Authority (Agreement #118972)

    Accuracy and precision of tidal wetland soil carbon mapping in the conterminous United States

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 8 (2018): 9478, doi:10.1038/s41598-018-26948-7.Tidal wetlands produce long-term soil organic carbon (C) stocks. Thus for carbon accounting purposes, we need accurate and precise information on the magnitude and spatial distribution of those stocks. We assembled and analyzed an unprecedented soil core dataset, and tested three strategies for mapping carbon stocks: applying the average value from the synthesis to mapped tidal wetlands, applying models fit using empirical data and applied using soil, vegetation and salinity maps, and relying on independently generated soil carbon maps. Soil carbon stocks were far lower on average and varied less spatially and with depth than stocks calculated from available soils maps. Further, variation in carbon density was not well-predicted based on climate, salinity, vegetation, or soil classes. Instead, the assembled dataset showed that carbon density across the conterminous united states (CONUS) was normally distributed, with a predictable range of observations. We identified the simplest strategy, applying mean carbon density (27.0 kg C m−3), as the best performing strategy, and conservatively estimated that the top meter of CONUS tidal wetland soil contains 0.72 petagrams C. This strategy could provide standardization in CONUS tidal carbon accounting until such a time as modeling and mapping advancements can quantitatively improve accuracy and precision.Synthesis efforts were funded by NASA Carbon Monitoring System (CMS; NNH14AY67I), USGS LandCarbon and the Smithsonian Institution. J.R.H. was additionally supported by the NSF-funded Coastal Carbon Research Coordination Network while completing this manuscript (DEB-1655622). J.M.S. coring efforts were funded by NSF (EAR-1204079). B.P.H. coring efforts were funded by Earth Observatory (Publication Number 197)

    Primers used in this study.

    No full text
    <p>For: forward primer. Rev: reverse primer. For mitochondrial control region primers (WF and FF), position in winter flounder sequence U12068 is given; for 18S primers, position in EU637075, <i>Kareius bicoloratus</i> 18S rRNA gene is given; for Uni-Minibar primers, position in HM180652, <i>Pseudopleuronectes yokohamae</i> cytochrome oxidase subunit I (COXI) is given. T<sub>m</sub>: melting temperature predicted by Integrated DNA Technologies’ Oligoanalyzer program (<a href="http://www.idtdna.com/analyzer/applications/oligoanalyzer/" target="_blank">http://www.idtdna.com/analyzer/applications/oligoanalyzer/</a>). GC%: % GC content of primer.</p><p><sup>a</sup> exact length varies between species.</p

    A New PCR-Based Method Shows That Blue Crabs (<i>Callinectes sapidus</i> (Rathbun)) Consume Winter Flounder (<i>Pseudopleuronectes americanus</i> (Walbaum))

    No full text
    <div><p>Winter flounder (<i>Pseudopleuronectes americanus</i>) once supported robust commercial and recreational fisheries in the New York (USA) region, but since the 1990s populations have been in decline. Available data show that settlement of young-of-the-year winter flounder has not declined as sharply as adult abundance, suggesting that juveniles are experiencing higher mortality following settlement. The recent increase of blue crab (<i>Callinectes sapidus</i>) abundance in the New York region raises the possibility that new sources of predation may be contributing to juvenile winter flounder mortality. To investigate this possibility we developed and validated a method to specifically detect winter flounder mitochondrial control region DNA sequences in the gut contents of blue crabs. A survey of 55 crabs collected from Shinnecock Bay (along the south shore of Long Island, New York) in July, August, and September of 2011 showed that 12 of 42 blue crabs (28.6%) from which PCR-amplifiable DNA was recovered had consumed winter flounder in the wild, empirically supporting the trophic link between these species that has been widely speculated to exist. This technique overcomes difficulties with visual identification of the often unrecognizable gut contents of decapod crustaceans, and modifications of this approach offer valuable tools to more broadly address their feeding habits on a wide variety of species.</p></div

    Data from: The response of correlated traits following cessation of fishery-induced selection

    Get PDF
    The application of evolutionary principles to the management of fisheries has gained considerable attention recently. Harvesting of fish may apply directional or disruptive selection to key life history traits and evidence for fishery-induced evolution is growing. The traits that are directly selected upon are often correlated (genetically or phenotypically) with a suite of interrelated physiological, behavioral, and morphological characters. A question that has received comparatively little attention is whether or not, after cessation of fishery-induced selection, these correlated traits revert back to previous states. Here, we empirically examine this question. In experiments with the Atlantic silverside, Menidia menidia, we applied size-selective culling for 5 generations and then maintained the lines a further 5 generations under random harvesting. We found that some traits do return to pre-harvesting levels (e.g., larval viability), some partially recover (e.g., egg volume, size at hatch), and others show no sign of change (e.g., food consumption rate, vertebral number). Such correlations among characters could, in theory, greatly accelerate or decelerate the recovery of fish populations. These results may explain why some fish stocks fail to recover after fishing pressure is relaxed

    Severe inbreeding and small effective number of breeders in a formerly abundant marine fish.

    Get PDF
    In contrast to freshwater fish it is presumed that marine fish are unlikely to spawn with close relatives due to the dilution effect of large breeding populations and their propensity for movement and reproductive mixing. Inbreeding is therefore not typically a focal concern of marine fish management. We measured the effective number of breeders in 6 New York estuaries for winter flounder (Pseudopleuronectes americanus), a formerly abundant fish, using 11 microsatellite markers (6-56 alleles per locus). The effective number of breeders for 1-2 years was remarkably small, with point estimates ranging from 65-289 individuals. Excess homozygosity was detected at 10 loci in all bays (FIS = 0.169-0.283) and individuals exhibited high average internal relatedness (IR; mean = 0.226). These both indicate that inbreeding is very common in all bays, after testing for and ruling out alternative explanations such as technical and sampling artifacts. This study demonstrates that even historically common marine fish can be prone to inbreeding, a factor that should be considered in fisheries management and conservation plans
    corecore