755 research outputs found
Energetics and structure of the lower E region associated with sporadic E layer
The electron temperature (<I>T<sub>e</sub></I>), electron density (<I>N<sub>e</sub></I>), and two components of the electric field were measured from the height of 90 km to 150 km by one of the sounding rockets launched during the SEEK-2 campaign. The rocket went through sporadic E layer (<I>E<sub>s</sub></I>) at the height of 102 km–109 km during ascent and 99 km–108 km during decent, respectively. The energy density of thermal electrons calculated from <I>N<sub>e</sub></I> and <I>T<sub>e</sub></I> shows the broad maximum in the height range of 100–110 km, and it decreases towards the lower and higher altitudes, which implies that a heat source exists in the height region of 100 km–110 km. A 3-D picture of <I>E<sub>s</sub></I>, that was drawn by using <I>T<sub>e</sub></I>, <I>N<sub>e</sub></I>, and the electric field data, corresponded to the computer simulation; the main structure of <I>E<sub>s</sub></I> is projected to a higher altitude along the magnetic line of force, thus producing irregular structures of <I>T<sub>e</sub></I>, <I>N<sub>e</sub></I> and electric field in higher altitude
Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2
Raman spectra were measured for mono-, bi- and trilayer graphene grown on SiC
by solid state graphitization, whereby the number of layers was pre-assigned by
angle-resolved ultraviolet photoemission spectroscopy. It was found that the
only unambiguous fingerprint in Raman spectroscopy to identify the number of
layers for graphene on SiC(0001) is the linewidth of the 2D (or D*) peak. The
Raman spectra of epitaxial graphene show significant differences as compared to
micromechanically cleaved graphene obtained from highly oriented pyrolytic
graphite crystals. The G peak is found to be blue-shifted. The 2D peak does not
exhibit any obvious shoulder structures but it is much broader and almost
resembles a single-peak even for multilayers. Flakes of epitaxial graphene were
transferred from SiC onto SiO2 for further Raman studies. A comparison of the
Raman data obtained for graphene on SiC with data for epitaxial graphene
transferred to SiO2 reveals that the G peak blue-shift is clearly due to the
SiC substrate. The broadened 2D peak however stems from the graphene structure
itself and not from the substrate.Comment: 27 pages, 8 figure
Observation of thundercloud-related gamma rays and neutrons in Tibet
During the 2010 rainy season in Yangbajing (4300 m above sea level) in Tibet, China, a long-duration count enhancement associated with thunderclouds was detected by a solar-neutron telescope and neutron monitors installed at the Yangbajing Comic Ray Observatory. The event, lasting for ∼40 min, was observed on July 22, 2010. The solar-neutron telescope detected significant γ-ray signals with energies >40 MeV in the event. Such a prolonged high-energy event has never been observed in association with thunderclouds, clearly suggesting that electron acceleration lasts for 40 min in thunderclouds. In addition, Monte Carlo simulations showed that >10 MeV γ rays largely contribute to the neutron monitor signals, while >1 keV neutrons produced via a photonuclear reaction contribute relatively less to the signals. This result suggests that enhancements of neutron monitors during thunderstorms are not necessarily clear evidence for neutron production, as previously thought
Detection of Multi-TeV Gamma Rays from Markarian 501 during an Unforeseen Flaring State in 1997 with the Tibet Air Shower Array
In 1997, the BL Lac Object Mrk 501 entered a very active phase and was the
brightest source in the sky at TeV energies, showing strong and frequent
flaring. Using the data obtained with a high density air shower array that has
been operating successfully at Yangbajing in Tibet since 1996, we searched for
gamma-ray signals from this source during the period from February through
August in 1997. Our observation detected multi-TeV -ray signals at the
3.7-Sigma level during this period. The most rapid increase of the excess
counts was observed between April 7 and June 16 and the statistical
significance of the excess counts in this period was 4.7-Sigma. Among several
observations of flaring TeV gamma-rays from Mrk 501 in 1997, this is the only
observation using a conventional air shower array. We present the energy
spectrum of gamma-rays which will be worthy to compare with those obtained by
imaging atmospheric Cerenkov telescopes.Comment: 9 pages, 7 figures, To appear in Ap
Search for Anisotropy of Ultra-High Energy Cosmic Rays with the Telescope Array Experiment
We study the anisotropy of Ultra-High Energy Cosmic Ray (UHECR) events
collected by the Telescope Array (TA) detector in the first 40 months of
operation. Following earlier studies, we examine event sets with energy
thresholds of 10 EeV, 40 EeV, and 57 EeV. We find that the distributions of the
events in right ascension and declination are compatible with an isotropic
distribution in all three sets. We then compare with previously reported
clustering of the UHECR events at small angular scales. No significant
clustering is found in the TA data. We then check the events with E>57 EeV for
correlations with nearby active galactic nuclei. No significant correlation is
found. Finally, we examine all three sets for correlations with the large-scale
structure of the Universe. We find that the two higher-energy sets are
compatible with both an isotropic distribution and the hypothesis that UHECR
sources follow the matter distribution of the Universe (the LSS hypothesis),
while the event set with E>10 EeV is compatible with isotropy and is not
compatible with the LSS hypothesis at 95% CL unless large deflection angles are
also assumed. We show that accounting for UHECR deflections in a realistic
model of the Galactic magnetic field can make this set compatible with the LSS
hypothesis.Comment: 10 pages, 9 figure
Transphyletic conservation of developmental regulatory state in animal evolution
Specific regulatory states, i.e., sets of expressed transcription factors, define the gene expression capabilities of cells in animal development. Here we explore the functional significance of an unprecedented example of regulatory state conservation from the cnidarian Nematostella to Drosophila, sea urchin, fish, and mammals. Our probe is a deeply conserved cis-regulatory DNA module of the SRY-box B2 (soxB2), recognizable at the sequence level across many phyla. Transphyletic cis-regulatory DNA transfer experiments reveal that the plesiomorphic control function of this module may have been to respond to a regulatory state associated with neuronal differentiation. By introducing expression constructs driven by this module from any phyletic source into the genomes of diverse developing animals, we discover that the regulatory state to which it responds is used at different levels of the neurogenic developmental process, including patterning and development of the vertebrate forebrain and neurogenesis in the Drosophila optic lobe and brain. The regulatory state recognized by the conserved DNA sequence may have been redeployed to different levels of the developmental regulatory program during evolution of complex central nervous systems
- …