17 research outputs found

    Seasonal variations of gravity wave activity in the lower stratosphere over an Antarctic Peninsula station

    Get PDF
    An 8 year series of 965 high-resolution radiosonde soundings over Rothera (67 degrees S, 68 degrees W) on the Antarctic Peninsula are used to study gravity wave characteristics in the lower stratosphere. The gravity wave energy is shown to have a seasonal variation with peaks at the equinoxes; the largest peak is around the spring equinox. During the winter months and extending into the spring, there is both an enhancement in the downward propagating wave activity and a reduction in the amount of critical-level filtering of upward propagating mountain waves. The horizontal propagation directions of the gravity waves were determined using hodographs. It was found that there is a predisposition toward northward and westward propagating waves above Rothera. This is in agreement with previous observations of gravity wave momentum flux in the wintertime mesosphere over Rothera. These results are consistent with a scenario whereby the stratospheric gravity wavefield above Rothera is determined by a combination of wind flow over topography-generating waves from below, and sources such as the edge of the polar stratospheric vortex-generating waves from above, especially during winter and spring

    Heavily loaded ferrite-polymer composites to produce high refractive index materials at centimetre wavelengths

    Get PDF
    A cold-pressing technique has been developed for fabricating composites composed of a polytetrafluoroethylene-polymer matrix and a wide range of volume-fractions of MnZn-ferrite filler (0%–80%). The electromagnetic properties at centimetre wavelengths of all prepared composites exhibited good reproducibility, with the most heavily loaded composites possessing simultaneously high permittivity (180 ± 10) and permeability (23±2). The natural logarithm of both the relative complex permittivity and permeability shows an approximately linear dependence with the volume fraction of ferrite. Thus, this simple method allows for the manufacture of bespoke materials required in the design and construction of devices based on the principles of transformation optics

    A Case Study of the Solar and Lunar Semidiurnal Tide Response to the 2013 Sudden Stratospheric Warming

    Get PDF
    This study investigates the response of the semidiurnal tide (SDT) to the 2013 major sudden stratospheric warming (SSW) event using meteor radar wind observations and mechanistic tidal model simulations. In the model, the background atmosphere is constrained to meteorological fields from the Navy Global Environmental Model—High Altitude analysis system. The solar (thermal) and lunar (gravitational) SDT components are forced by incorporating hourly temperature tendency fields from the ERA5 forecast model, and by specifying the M2 and N2 lunar gravitational potentials, respectively. The simulated SDT response is compared against meteor wind observations from the CMOR (43.3°N, 80.8°W), Collm (51.3°N, 13.0°E), and Kiruna (67.5°N, 20.1°E) radars, showing close agreement with the observed amplitude and phase variability. Numerical experiments investigate the individual roles of the solar and lunar SDT components in shaping the net SDT response. Further experiments isolate the impact of changing propagation conditions through the zonal mean background atmosphere, non-linear wave-wave interactions, and the SSW-induced stratospheric ozone redistribution. Results indicate that between 80 and 97 km altitude in the northern hemisphere mid-to-high latitudes the net SDT response is driven by the solar SDT component, which itself is shaped by changing propagation conditions through the zonal mean background atmosphere and by non-linear wave-wave interactions. In addition, it is demonstrated that as a result of the rapidly varying solar SDT during the SSW the contribution of the lunar SDT to the total measured tidal field can be significantly overestimated

    Atmospheric Tomography Using the Nordic Meteor Radar Cluster And Chilean Observation Network de Meteor Radars: Network Details and 3D-Var Retrieval

    Get PDF
    Ground-based remote sensing of atmospheric parameters is often limited to single station observations by vertical profiles at a certain geographic location. This is a limiting factor for investigating gravity wave dynamics as the spatial information is often missing, e.g., horizontal wavelength, propagation direction or intrinsic frequency. In this study, we present a new retrieval algorithm for multistatic meteor radar networks to obtain tomographic 3-D wind fields within a pre-defined domain area. The algorithm is part of the Agile Software for Gravity wAve Regional Dynamics (ASGARD) and called 3D-Var, and based on the optimal estimation technique and Bayesian statistics. The performance of the 3D-Var retrieval is demonstrated using two meteor radar networks: the Nordic Meteor Radar Cluster and the Chilean Observation Network De Meteor Radars (CONDOR). The optimal estimation implementation provide statistically sound solutions and diagnostics from the averaging kernels and measurement response. We present initial scientific results such as body forces of breaking gravity waves leading to two counter-rotating vortices and horizontal wavelength spectra indicating a transition between the rotational k-3 and divergent k-5/3 mode at scales of 80–120 km. In addition, we performed a keogram analysis over extended periods to reflect the latitudinal and temporal impact of a minor sudden stratospheric warming in December 2019. Finally, we demonstrate the applicability of the 3D-Var algorithm to perform large-scale retrievals to derive meteorological wind maps covering a latitude region from Svalbard, north of the European Arctic mainland, to central Norway

    Aura MLS observations of the westward-propagating s=1, 16-day planetary wave in the stratosphere, mesosphere and lower thermosphere

    Get PDF
    The Microwave Limb Sounder (MLS) on the Aura satellite has been used to measure temperatures in the stratosphere, mesosphere and lower thermosphere. The data used here are from August 2004 to December 2010 and latitudes 75 degrees N to 75 degrees S. The temperature data reveal the regular presence of a westward-propagating 16-day planetary wave with zonal wavenumber 1. The wave amplitudes maximise in winter at middle to high latitudes, where monthly-mean amplitudes can be as large as similar to 8 K. Significant wave amplitudes are also observed in the summer-time mesosphere and lower thermosphere (MLT) and at lower stratospheric heights of up to similar to 20 km at middle to high latitudes. Wave amplitudes in the Northern Hemisphere approach values twice as large as those in the Southern Hemisphere. Wave amplitudes are also closely related to mean zonal winds and are largest in regions of strongest eastward flow. There is a reduction in wave amplitudes at the stratopause. No significant wave amplitudes are observed near the equator or in the strongly westward background winds of the atmosphere in summer. This behaviour is interpreted as a consequence of wave/mean-flow interactions. Perturbations in wave amplitude summer MLT are compared to those simultaneously observed in the winter stratosphere of the opposite hemisphere and found to have a correlation coefficient of +0.22, suggesting a small degrees of inter-hemispheric coupling. We interpret this to mean that some of the summer-time MLT wave may originate in the winter stratosphere of the opposite hemisphere and have been ducted across the equator. We do not observe a significant QBO modulation of the 16-day wave amplitude in the polar summer-time MLT. Wave amplitudes were also observed to be suppressed during the major sudden stratospheric warming events of the Northern Hemisphere winters of 2006 and 2009

    Dynamics of the Antarctic and Arctic mesosphere and lower thermosphere - Part 1: Mean winds

    Get PDF
    Zonal and meridional winds have been measured in the upper mesosphere and lower thermosphere at polar latitudes using two ground-based meteor radars. One radar is located at Rothera (68° S, 68° W) in the Antarctic and has been operational since February 2005. The second radar is located at Esrange (68° N, 21° E) in the Arctic and has been operational since October 1999. Both radars have produced relatively continuous measurements. Here we consider measurements made up to the end of 2009. Both radars are of similar design and at conjugate geographical latitudes, making the results directly comparable and thus allowing investigation of the differences in the mean winds of the Antarctic and Arctic regions. The data from each radar have been used to construct climatologies of monthly-mean zonal and meridional winds at heights between 80 and 100 km. Both Antarctic and Arctic data sets reveal seasonally varying zonal and meridional winds in which the broad pattern repeats from year to year. In particular, the zonal winds display a strong shear in summer associated with the upper part of the westward summertime zonal jet. The winds generally reverse to eastward flow at heights of ~90 km. The zonal winds are eastward throughout the rest of the year. The meridional winds are generally equatorward over both sites, although brief episodes of poleward flow are often evident near the equinoxes and during winter. The strongest equatorward flows occur at heights of ~90 km during summer. There are significant differences between the mean winds observed in the Antarctic and Arctic. In particular, the westward winds in summer are stronger and occur earlier in the season in the Antarctic compared with the Arctic. The eastward winds evident above the summertime zonal wind reversal are significantly stronger in the Arctic. The summertime equatorward flow in the Antarctic is slightly weaker, but occurs over a greater depth than is the case in the Arctic. Comparisons of these observations with those of the URAP and HWM-07 empirical models reveal a number of significant differences. In particular, the zonal winds observed in the Antarctic during wintertime are significantly weaker than those of URAP. However, the URAP zonal winds are a good match to the observations of the Arctic. Significant differences are evident between the observations and HWM-07. In particular, the strong wintertime zonal winds of the Arctic in HWM-07 are not evident in the observations and the summertime zonal winds in HWM-07 are systematically stronger than observed. The agreement with meridional winds is generally poor. There is a significant amount of inter-annual variability in the observed zonal and meridional winds. Particularly high variability is observed in the Arctic zonal winds in spring and is probably associated with stratospheric warmings

    Relationship between variability of the semidiurnal tide in the Northern Hemisphere mesosphere and quasi-stationary planetary waves throughout the global middle atmosphere

    Get PDF
    To investigate possible couplings between planetary waves and the semidiurnal tide (SDT), this work examines the statistical correlations between the SDT amplitudes observed in the Northern Hemisphere (NH) mesosphere and stationary planetary wave (SPW) with wavenumber S=1 (SPW1) amplitudes throughout the global stratosphere and mesosphere. The latter are derived from the Aura-MLS temperature measurements. During NH summer-fall (July–October), the mesospheric SDT amplitudes observed at Svalbard (78° N) and Eureka (80° N) usually do not show persistent correlations with the SPW1 amplitudes in the opposite hemisphere. Although the SDT amplitudes observed at lower latitudes (~50–70° N), especially at Saskatoon (52° N), are often shown to be highly and positively correlated with the SPW1 amplitudes in high southern latitudes, these correlations cannot be sufficiently explained as evidence for a direct physical link between the Southern Hemisphere (SH) winter-early spring SPW and NH summer-early fall mesospheric SDT. This is because the migrating tide's contribution is usually dominant in the mid-high latitude (~50–70° N) NH mesosphere during the local late summer-early fall (July–September). The numerical correlation is dominated by similar low-frequency variability or trends between the amplitudes of the NH SDT and SH SPW1 during the respective equinoctial transitions. In contradistinction, during NH winter (November–February), the mesospheric SDT amplitudes at northern mid-high latitudes (~50–80° N) are observed to be significantly and positively correlated with the SPW1 amplitudes in the same hemisphere in most cases. Because both the SPW and migrating SDT are large in the NH during the local winter, a non-linear interaction between SPW and migrating SDT probably occurs, thus providing a global non-migrating SDT. This is consistent with observations of SDT in Antarctica that are large in summer than in winter. It is suggested that climatological hemispheric asymmetry, e.g. the SH and NH winter characteristics are substantially different, lead to differences in the inter-hemispheric SPW-tide physical links

    Observations of gravity wave forcing of the mesopause region during the January 2013 major Sudden Stratospheric Warming

    No full text
    Studies of vertical and interhemispheric coupling during Sudden Stratospheric Warmings (SSWs) suggest that gravity wave (GW) momentum flux divergence plays a key role in forcing the middle atmosphere, although observational validation of GW forcing is limited. We present a whole atmosphere view of zonal winds from the surface to 100 km during the January 2013 major SSW, together with observed GW momentum fluxes in the mesopause region derived from uninterrupted high-resolution meteor radar observations from an All-Sky Interferometric Meteor Radar system located at Trondheim, Norway (63.4°N, 10.5°E). Observations show GW momentum flux divergence 6 days prior to the SSW onset, producing an eastward forcing with peak values of ∼+145 ± 60ms−1d−1. As the SSW evolves, GW forcing turns westward, reaching a minimum of ∼−240 ± 70ms−1d−1∼+18 days after the SSW onset. These results are discussed in light of previous studies and simulations using the Whole Atmosphere Community Climate Model with Specified Dynamics.©2014. The Authors. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made

    Asymmetry in the interhemispheric planetary wave-tide link between the two hemispheres

    No full text
    This study assesses the relation between the year-to-year variability of the semidiurnal tides (SDT) observed at high latitudes of both hemispheres and the global stratospheric stationary planetary wave (SPW) with zonal wavenumber S=1 (SPW1) derived from the UKMO temperature data. No significant positive correlation can be identified between the interannual variability of the Northern Hemisphere (NH) SDT and the Southern Hemisphere (SH) SPW1 for austral late-winter months. In contrast, a good consistency is evident for the interannual variations between the SDT observed at Rothera (68°S, 68°W) and the Arctic SPW1 for NH mid-winter months. Since it has been observed that during austral summer the non-migrating SDT often plays a significant role at the latitude of Rothera, a physical link between the SH SDT and the NH SPW is suggested. This asymmetry in the interhemispheric link is also noted in a recent study
    corecore