11 research outputs found

    Differentiation of Agaricus species and other homobasidiomycetes based on volatile production patterns using an electronic nose system

    Get PDF
    Comparisons of the qualitative volatile production patterns between seven species of Agaricus, and between two of Volvariella and Pleurotus and one Coprinus species when grown at 25°C on agar media for 14d were made. There was good reproducibility between the volatile production patterns of the same species using an electronic nose unit with a 14 conducting sensor polymer array. Principle Component Analysis (PCA) showed that it was possible to discriminate between five of the seven Agaricus species, but that some overlap occurred between the others. Cluster analysis showed that there was also overlap between some species with the tropical collection of A. bitorquis separating out from the others. The volatile production profile of the commercial A. bisporus was close to that of a wild species, A. campestris. A. bisporus could be readily differentiated from other non-Agaricus species. This study demonstrates the potential for using electronic nose systems to rapidly differentiate mycelial cultures of homobasidiomycete mushrooms

    Knowledge-defined networking

    Get PDF
    The research community has considered in the past the application of Artificial Intelligence (AI) techniques to control and operate networks. A notable example is the Knowledge Plane proposed by D.Clark et al. However, such techniques have not been extensively prototyped or deployed in the field yet. In this paper, we explore the reasons for the lack of adoption and posit that the rise of two recent paradigms: Software-Defined Networking (SDN) and Network Analytics (NA), will facilitate the adoption of AI techniques in the context of network operation and control. We describe a new paradigm that accommodates and exploits SDN, NA and AI, and provide use-cases that illustrate its applicability and benefits. We also present simple experimental results that support, for some relevant use-cases, its feasibility. We refer to this new paradigm as Knowledge-Defined Networking (KDN).Peer ReviewedPostprint (author's final draft

    Experiences in firmware development for a CubeSat instrument payload

    Get PDF
    Recent advancements in gamma-ray detector technology have brought new opportunities to study gamma-ray bursts and other high-energy phenomena. However, there is a lack of dissemination on the development methods, tools and techniques used in the production of instrument flight firmware. This is understandable as firmware for spacecraft payloads may be proprietary or exceptionally hardware specific and so is not always published. However, this leaves a gap in the knowledge for CubeSat teams, especially those consisting of university students who may be building a custom spacecraft payload with limited initial experience. The Gamma-Ray Module (GMOD) on-board EIRSAT-1, a 2U CubeSat in the 2nd European Space Agency Fly Your Satellite! programme, is one such instrument. GMOD features a 25x25x40mm Scionix CeBr3 scintillator, coupled to an array of 16 (4x4) JSeries OnSemiconductor MicroFJ-60035-TSV silicon photomultipliers (SiPMs) with readout provided by the SIPHRA IDE3380 application specific integrated circuit. The instrument is supported by the Gamma-Ray Module motherboard which controls and configures the instrument, providing regulated voltage and current sources as well as generating time tagged event packets and a temporary on-board flash storage. At the core of this system is the Texas Instruments MSP430FR5994 microcontroller. A custom firmware was produced for the instrument by the EIRSAT-1 team over numerous cycles of testing and development to reliably perform the long duration tasks of readout, storage and transfer of time tagged event data to the EIRSAT-1 on-board computer. Recognising the value of sharing our experiences and pitfalls on firmware development with the wider CubeSat community, this paper will provide an introduction to GMOD, with focus primarily on the development approach of the firmware. The development, testing, version control, essential tools and an overview of how the resources provided by the device manufacturer were used will be examined, such that the lessons learned may be extended to other payloads from student-led mission

    The role of radical economic restructuring in truancy from school and engagement in crime

    Get PDF
    Of late, criminologists have become acutely aware of the relationship between school outcomes and engagement in crime as an adult. This phenomenon – which has come to be known as the ‘school-to-prison-pipeline’ – has been studied in North America and the UK, and requires longitudinal datasets. Typically, these studies approach the phenomenon from an individualist perspective and examine truancy in terms of the truants’ attitudes, academic achievement or their home-life. What remains unclear however is a consideration of a) how macro-level social and economic processes may influence the incidence of truancy, and b) how structural processes fluctuate over time, and in so doing produce variations in truancy rates or the causal processes associated with truancy. Using longitudinal data from two birth cohort studies, we empirically address these blind-spots and test the role of social-structural processes in truancy, and how these may change over timeEconomic and Social Research Counci

    Thermal Vacuum Test Campaign of the EIRSAT-1 Engineering Qualification Model

    No full text
    CubeSats facilitate rapid development and deployment of missions for educational, technology demonstration, and scientific purposes. However, they are subject to a high failure rate, with a leading cause being the lack of system-level verification. The Educational Irish Research Satellite (EIRSAT-1) is a CubeSat mission under development in the European Space Agency’s (ESA) Fly Your Satellite! Programme. EIRSAT-1 is a 2U CubeSat with three novel payloads and a bespoke antenna deployment module, which all contribute to the complexity of the project. To increase the likelihood of mission success, a prototype model philosophy is being employed, where both an engineering qualification model (EQM) and a flight model of EIRSAT-1 are being built. Following the assembly of the EQM, the spacecraft underwent a successful full functional test and month-long mission test. An environmental test campaign in ESA Education Office’s CubeSat Support Facility was then conducted with the EQM where both vibration and thermal verification test campaigns were performed. The focus of this paper is the thermal testing and verification of the EIRSAT-1 EQM. Over three weeks, the EQM was subjected to one non-operational cycle, three and a half operational cycles, and a thermal balance test in a thermal vacuum chamber. After dwelling at each temperature extreme, functional tests were performed to investigate the performance of the spacecraft in this space representative environment. The approach to planning and executing the thermal testing is described in detail including the documentation required, set up of the test equipment, and determination of the test levels. Overall, the campaign demonstrated that the mission can successfully operate in a space environment similar to that expected in orbit, despite encountering a number of issues. These issues included a payload displaying anomalous behaviour at cold temperatures and needing to redefine test levels due to an insufficient understanding of the internal dissipation in the spacecraft. A total of two major and three minor non-conformances were raised. Crucially, these issues could not have been found without thermal testing, despite the comprehensive ambient tests performed. The main results and lessons learned during this thermal test campaign are presented with the aim of guiding future missions on optimal approaches in organising and executing the thermal testing of their CubeSats

    Knowledge-defined networking

    No full text
    The research community has considered in the past the application of Artificial Intelligence (AI) techniques to control and operate networks. A notable example is the Knowledge Plane proposed by D.Clark et al. However, such techniques have not been extensively prototyped or deployed in the field yet. In this paper, we explore the reasons for the lack of adoption and posit that the rise of two recent paradigms: Software-Defined Networking (SDN) and Network Analytics (NA), will facilitate the adoption of AI techniques in the context of network operation and control. We describe a new paradigm that accommodates and exploits SDN, NA and AI, and provide use-cases that illustrate its applicability and benefits. We also present simple experimental results that support, for some relevant use-cases, its feasibility. We refer to this new paradigm as Knowledge-Defined Networking (KDN).Peer Reviewe

    Thermal Vacuum Test Campaign of the EIRSAT-1 Engineering Qualification Model

    No full text
    CubeSats facilitate rapid development and deployment of missions for educational, technology demonstration, and scientific purposes. However, they are subject to a high failure rate, with a leading cause being the lack of system-level verification. The Educational Irish Research Satellite (EIRSAT-1) is a CubeSat mission under development in the European Space Agency’s (ESA) Fly Your Satellite! Programme. EIRSAT-1 is a 2U CubeSat with three novel payloads and a bespoke antenna deployment module, which all contribute to the complexity of the project. To increase the likelihood of mission success, a prototype model philosophy is being employed, where both an engineering qualification model (EQM) and a flight model of EIRSAT-1 are being built. Following the assembly of the EQM, the spacecraft underwent a successful full functional test and month-long mission test. An environmental test campaign in ESA Education Office’s CubeSat Support Facility was then conducted with the EQM where both vibration and thermal verification test campaigns were performed. The focus of this paper is the thermal testing and verification of the EIRSAT-1 EQM. Over three weeks, the EQM was subjected to one non-operational cycle, three and a half operational cycles, and a thermal balance test in a thermal vacuum chamber. After dwelling at each temperature extreme, functional tests were performed to investigate the performance of the spacecraft in this space representative environment. The approach to planning and executing the thermal testing is described in detail including the documentation required, set up of the test equipment, and determination of the test levels. Overall, the campaign demonstrated that the mission can successfully operate in a space environment similar to that expected in orbit, despite encountering a number of issues. These issues included a payload displaying anomalous behaviour at cold temperatures and needing to redefine test levels due to an insufficient understanding of the internal dissipation in the spacecraft. A total of two major and three minor non-conformances were raised. Crucially, these issues could not have been found without thermal testing, despite the comprehensive ambient tests performed. The main results and lessons learned during this thermal test campaign are presented with the aim of guiding future missions on optimal approaches in organising and executing the thermal testing of their CubeSats

    Consensus statement: Virus taxonomy in the age of metagenomics

    Get PDF
    Comment in:A sea change for virology. [Nat Rev Microbiol. 2017]International audienceThe number and diversity of viral sequences that are identified in metagenomic data far exceeds that of experimentally characterized virus isolates. In a recent workshop, a panel of experts discussed the proposal that, with appropriate quality control, viruses that are known only from metagenomic data can, and should be, incorporated into the official classification scheme of the International Committee on Taxonomy of Viruses (ICTV). Although a taxonomy that is based on metagenomic sequence data alone represents a substantial departure from the traditional reliance on phenotypic properties, the development of a robust framework for sequence-based virus taxonomy is indispensable for the comprehensive characterization of the global virome. In this Consensus Statement article, we consider the rationale for why metagenomic sequence data should, and how it can, be incorporated into the ICTV taxonomy, and present proposals that have been endorsed by the Executive Committee of the ICTV
    corecore