31 research outputs found

    Insight Into the Molecular Program of Meiosis

    Get PDF

    RTVP-1 promotes mesenchymal transformation of glioma via a STAT-3/IL-6-dependent positive feedback loop

    Get PDF
    Glioblastomas (GBMs), the most aggressive primary brain tumors, exhibit increased invasiveness and resistance to anti-tumor treatments. We explored the role of RTVP-1, a glioma-associated protein that promotes glioma cell migration, in the mesenchymal transformation of GBM. Analysis of The Cancer Genome Atlas (TCGA) demonstrated that RTVP-1 expression was higher in mesenchymal GBM and predicted tumor recurrence and poor clinical outcome. ChiP analysis revealed that the RTVP-1 promoter binds STAT3 and C/EBPβ, two master transcription factors that regulate mesenchymal transformation of GBM. In addition, IL-6 induced RTVP-1 expression in a STAT3-dependent manner. RTVP-1 increased the migration and mesenchymal transformation of glioma cells. Similarly, overexpression of RTVP-1 in human neural stem cells induced mesenchymal differentiation, whereas silencing of RTVP-1 in glioma stem cells (GSCs) decreased the mesenchymal transformation and stemness of these cells. Silencing of RTVP-1 also increased the survival of mice bearing GSC-derived xenografts. Using gene array analysis of RTVP-1 silenced glioma cells we identified IL-6 as a mediator of RTVP-1 effects on the mesenchymal transformation and migration of GSCs, therefore acting in a positive feedback loop by upregulating RTVP-1 expression via the STAT3 pathway. Collectively, these results implicate RTVP-1 as a novel prognostic marker and therapeutic target in GBM

    Blast output format lesson

    No full text
    <p>This file includes blast output (format 6) of de novo sequncing annotation</p

    Molecular assessment of the effect of light and heterotrophy in the scleractinian coral Stylophora pistillata

    No full text
    International audienceCorals acquire nutrients via the transfer of photosynthates by their endo-symbionts (autotrophy), or via zooplankton predation by the animal (heterotrophy). During stress events, corals lose their endosymbionts, and undergo starvation, unless they increase their heterotrophic capacities. Molecular mechanisms by which heterotrophy sustains metabolism in stressed corals remain elusive. Here for the first time, to the best of our knowledge, we identified specific genes expressed in heterotrophically fed and unfed colonies of the scleractinian coral Stylophora pistillata, maintained under normal and light-stress conditions. Physiological parameters and gene expression profiling demonstrated that fed corals better resisted stress than unfed ones by exhibiting less oxidative damage and protein degradation. Processes affected in light-stressed unfed corals (HLU), were related to energy and metabolite supply, carbohydrate biosynthesis, ion and nutrient transport, oxidative stress, Ca 2þ homeostasis, metabolism and calcification (carbonic anhydrases, calcium-transporting ATPase, bone morphogenetic proteins). Two genes (cp2u1 and cp1a2), which belong to the cytochrome P450 superfamily, were also upregu-lated 249 and 10 times, respectively, in HLU corals. In contrast, few of these processes were affected in light-stressed fed corals (HLF) because feeding supplied antioxidants and energetic molecules, which help repair oxidative damage. Altogether, these results show that heterotrophy helps prevent the cascade of metabolic problems downstream of oxidative stress

    The Algal Symbiont Modifies the Transcriptome of the Scleractinian Coral Euphyllia paradivisa during Heat Stress

    No full text
    The profound mutualistic symbiosis between corals and their endosymbiotic counterparts, Symbiodiniaceae algae, has been threatened by the increase in seawater temperatures, leading to breakdown of the symbiotic relationship-coral bleaching. To characterize the heat-stress response of the holobiont, we generated vital apo-symbiotic Euphyllia paradivisa corals that lacked the endosymbiotic algae. Using RNA sequencing, we analyzed the gene expression of these apo-symbionts vs. symbiotic ones, to test the effect of the algal presence on the tolerance of the coral. We utilized literature-derived lists of "symbiosis differentially expressed genes" and "coral heat-stress genes" in order to compare between the treatments. The symbiotic and apo-symbiotic samples were segregated into two separate groups with several different enriched gene ontologies. Our findings suggest that the presence of endosymbionts has a greater negative impact on the host than the environmental temperature conditions experienced by the holobiont. The peak of the stress reaction was identified as 28 degrees C, with the highest number of differentially expressed genes. We suggest that the algal symbionts increase coral holobiont susceptibility to elevated temperatures. Currently, we can only speculate whether coral species, such as E. paradivisa, with the plasticity to also flourish as apo-symbionts, may have a greater chance to withstand the upcoming global climate change challenge

    Setting the pace: host rhythmic behaviour and gene expression patterns in the facultatively symbiotic cnidarian Aiptasia are determined largely by Symbiodinium

    Get PDF
    Abstract Background All organisms employ biological clocks to anticipate physical changes in the environment; however, the integration of biological clocks in symbiotic systems has received limited attention. In corals, the interpretation of rhythmic behaviours is complicated by the daily oscillations in tissue oxygen tension resulting from the photosynthetic and respiratory activities of the associated algal endosymbiont Symbiodinium. In order to better understand the integration of biological clocks in cnidarian hosts of Symbiodinium, daily rhythms of behaviour and gene expression were studied in symbiotic and aposymbiotic morphs of the sea-anemone Aiptasia diaphana. Results The results showed that whereas circatidal (approx. 12-h) cycles of activity and gene expression predominated in aposymbiotic morphs, circadian (approx. 24-h) patterns were the more common in symbiotic morphs, where the expression of a significant number of genes shifted from a 12- to 24-h rhythm. The behavioural experiments on symbiotic A. diaphana displayed diel (24-h) rhythmicity in body and tentacle contraction under the light/dark cycles, whereas aposymbiotic morphs showed approximately 12-h (circatidal) rhythmicity. Reinfection experiments represent an important step in understanding the hierarchy of endogenous clocks in symbiotic associations, where the aposymbiotic Aiptasia morphs returned to a 24-h behavioural rhythm after repopulation with algae. Conclusion Whilst some modification of host metabolism is to be expected, the extent to which the presence of the algae modified host endogenous behavioural and transcriptional rhythms implies that it is the symbionts that influence the pace. Our results clearly demonstrate the importance of the endosymbiotic algae in determining the timing and the duration of the extension and contraction of the body and tentacles and temporal gene expression
    corecore