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Insight Into the Molecular Program of Meiosis 

Hiba Waldman Ben-Asher and Jeremy Don* 
The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 

Israel 

1. Introduction 

“We estimate that >2,300 genes (~4% of the mouse genome) are dedicated to male germ cell-
specific transcripts, 99% of which are first expressed during or after meiosis”. This quotation 
from a paper published by Schultz et al. (2003), reflects the tremendous complexity of 
gamete production, the essence of which is meiosis. Meiosis is a differantiative process in 
which seemingly contradicting molecular pathways are activated simultaneously. On one 
hand the regular components and checkpoints of the cell division machinery, which is 
complex enough by itself, are utilized, but on the other hand a whole array of genes are 
activated to enable the unique characteristics of the meiotic division, such as partition of 
homologous chromosomes, and not the sister chromatides, in meiosis I, or executing cell 
division without a prior DNA duplication in meiosis II. On one hand double strand breaks 
are deliberately formed to ensure pairing of homologous chromosomes and recombination, 
but on the other hand a whole array of genes involved in DNA repair and safeguarding 
genome integrity are alerted. The meiotic complexity is also exemplified by the extensive 
dependence on a cross-talk between germ cells themselves, and between the differentiating 
germ cells and their surrounding somatic cells, i.e. Sertoli cells in the testis or granulosa cells 
in the ovarian follicle. Finally, the complexity of the meiotic process is depicted by the 
differences between males and females, regarding both the outcome of the meiotic division 
(four basically similar post meiotic round spermatids in the male versus one functional egg 
and three polar body cells that degenerate in the female), and its kinetics (a continuous 
process in the male versus an in-continuous process in the female). It is, therefore, absolutely 
crucial that the very many different molecular pathways operating during meiosis be tightly 
concerted and regulated. However, Virginia Hughes, in a paper published in Nature 
medicine (2008), stated that: “So far, scientists have identified nearly 300 DNA mutations in 
man with reproductive defects”, implying that our understanding of the meiotic molecular 
network is still very limited, although significant progress has been made since 2008.  

Various techniques were applied during the years to study the role of different genes during 
meiosis. These include: 1) developing spermatogenic cell culture systems and studying the 
effect of over-expressing / silencing specific genes on entry into and progressing through 
meiosis in-vitro (Farini et al. 2005; Feng et al. 2002; Nayernia et al. 2006); 2) developing 
genetically modified animal models, mainly mice, (including Knockout models) to study the 
effect of modification or deletion of a specific gene on the meiotic process in-vivo (review in 
Jamsai & O’Bryan, 2011); 3) utilizing complementation approaches to detect genes with new 
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meiotic functions, such as Aym1 (Malcov et al. 2004); and 4) utilizing spermatogonial cell 
transplantation approaches in testicular repopulation studies (Brinster 2002; Brinster & 
Zimmermann 1994; McLean 2005). These studies contributed greatly to understanding the role 
of specific genes during meiosis, but it was not until the emergence of the microarray 
technology and the development of sophisticated bioinformatics tools that large scale studies 
on meiotic molecular networks and regulation could be executed.  Indeed, several microarray 
studies on meiotic genes were performed (Chalmel et al. 2007; Schlecht et al. 2004; Schultz et al. 
2003; Shima et al. 2004; Yu et al. 2003), yielding a huge amount of new information. However, 
the biological significance of the transcriptomic data obtained in these experiments, in terms of 
understanding the molecular program of meiosis, is still an ongoing challenge.  

Using mouse spermatogenesis as a model system, we recently performed a 
comprehensive meiotic microarray study (Waldman Ben-Asher et al., 2010). This study 
was based on the known developmental schedule of the first spermatogenic wave (Bellve 
et al. 1977; Malkov et al. 1998). According to this developmental schedule, until post-natal 
age of 7 days (pn d7), the seminiferous tubules within the testis contain only pre-meiotic 
spermatogonia cells, along side with the somatic Sertoli cells. By pn d10, spermatocytes 
from the first spermatogenic wave enter prophase I of the meiotic division, and by pn d12 
zygotene spermatocytes first appear. At pn d14 and 17, these cells reach the early and late 
pachytene stage, respectively. At pn d21, post meiotic round spermatids are found and at 
pn d24 and d27 elongating and elongated haploid spermatids are present in the testis, 
respectively. Testes from pn d35 mice are expected to contain the entire spermatogenic 
lineage. Thus, in our microarray study we compared the testicular transcriptomes of pups 
at: pn d7, pn d10, pn d12, pn d14, and pn d17. In these experiments we were able to 
clearly define six apparent patterns of gene expression throughout meiosis (Figure 1). 
Given this as a starting point, we will describe in this chapter the use of several 
bioinformatic approaches to ascribe biological significance to our results, thus getting new 
insights into the molecular program of meiosis.  

 

Fig. 1. Six main patterns of gene expression throughout meiosis. Mean expression level of 

the genes within each group is expressed as the mean ratio between the expression level and 

the geometric average for each developmental stage. (reproduced with permission from 

Waldman Ben-Asher et al., 2010).  
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2. Regulating meiotic gene expression 

2.1 Chromosomal localization of genes as an expressional regulatory factor 

One of the intriguing findings we have noticed in analyzing our microarray results was 

that genes from the different expressional groups are not randomly distributed 

throughout the genome. There are specific chromosomes that preferentially harbor genes 

from specific expressional groups, whereas other chromosomes are preferentially 

depleted of genes from specific expressional groups (Waldman Ben-Asher et al., 2010). For 

this analysis, we first determined, bioinformatically, the chromosomal location of each of 

the genes within each of the six expression groups that were obtained, and calculated the 

percentage of genes within each group that appear on a specific chromosome. This, was 

then, compared to the percentage of annotated genes from the entire mouse genome that 

are located on each specific chromosome. The statistical significance of the differences 

between the distribution of the meiotic genes within each group and that of the genes of 

the entire genome on each chromosome was determined using the confidence interval 

test, with p<0.05 indicating statistically significant differences. To address the randomness 

of the chromosomal location of genes that are specifically up-regulated or suppressed 

during the various meiotic stages, 1000 random lists from the entire genome, consisting of 

the same number of genes as in each of our six expression groups (6,000 lists altogether), 

were created and the mean distribution of all 1000 randomly sampled lists in each group 

(expressed as percentage of genes on each chromosome), ±SD, was calculated.  We found 

that the obtained results were basically identical to those obtained with the whole genome 

distribution, with very small SDs. These results indicated that the distribution of 

annotated genes from the entire mouse genome along the chromosomes resembles 

random distribution, rendering the deviations in chromosomal distribution among 

meiotic genes, statistically and functionally significant. Our results, which are 

summarized in table 1, indicate that genes from group 1 are enriched on chromosome 11 

and on chromosome 17, and are under represented on chromosome X. Genes from group 

2 are enriched in chromosomes 3 and 15, and genes from group 3 are enriched in 

chromosome 11 whereas chromosome 13 is almost completely depleted of genes from this 

group. The distribution of genes from group 4, do not deviate significantly from the 

whole genome distribution. Genes from group 5 are under-represented in chromosome 4 

and over-represented in chromosome 8, and group 6 genes are over-represented in 

chromosomes 1 and 6 and under represented in chromosome 15. Furthermore, an in-

depth examination of the results in this analysis revealed a mirror-like patterns of 

expression of groups 2 and 6, with over and under representation on chromosome 15, 

respectively. This might point at chromosome 15 as containing genes that are especially 

required for the pachytene stage at day 14. A similar mirror-like patterns of expression 

exist also in groups 1 and 5 with over and under representation on chromosome 11, 

respectively (under representation of group 5 genes on chromosome 11 was just above the 

p<0.05 limit), suggesting that this chromosome contains meiotically-regulated genes that 

are not activated during the first steps of spermatogenesis, but only later, as cells enter 

and proceed through meiosis (p.n. days 12-17). The functional conclusion from this gene 

location analysis is that chromosomal location seems to be a factor in regulating gene 

expression during meiosis. 
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 Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 

Chromo. 1      + 

10% vs. 6% 

Chromo. 3  + 

9% vs. 4%

    

Chromo. 4     - 

1% vs. 7% 

 

Chromo. 6      + 

9% vs. 5% 

Chromo. 8     + 

10% vs. 5%

 

Chromo. 11 + 

15% vs. 8% 

 + 

17% vs. 8% 

   

Chromo. 13   - 

0.1% vs. 4%

   

Chromo. 15  + 

9% vs. 3%

   - 

1% vs. 3% 

Chromo. 17 + 

9% vs. 5% 

     

Chromo. X - 

0.5% vs. 4%

     

 

 

Table 1. Summary of deviations in distribution of meiotic genes from the six expressional 

groups, along chromosomes, compared to whole genome/random distribution. All 

indicated deviations are statistically significant (p<0.05). Over-representation is denoted by 

(+), under-representation is denoted by (-). Percent of meiotic genes versus percent of whole 

genome genes are indicated. For example, 15% of group 1 genes are located on chromosome 

11 versus 8% of whole genome/random distribution. 

In an attempt to take the chromosomal location analysis one step forward, we asked, to 

what extend does genes from the same expressional group that are located on the same 

chromosome are clustered in the vicinity of each other. The rational for this analysis was 

that such clustering might enable co-regulation of expression by sharing overall chromatin 

organization that favors either transcription or silencing. For this analysis we used the 

DAVID program, a program that identifies functional groups of genes that are enriched in a 

given dataset compared with their representation in the entire genome (Huang et al., 2009a; 

Huang et al., 2009b). We, therefore, looked for genes that were clustered to specific 

cytobands.  As shown in table 2, in four of the six groups we found only small clusters (2-5 

genes), within specific cytobands, that were statistically significant compared to random 

distribution along the specific chromosome (p<0.05). This suggests that clustering to specific 

chromosomal regions (cytobands) might, at the most, contribute to regulation of expression 

at the local level but does not contribute significantly (if at all) to the overall co-regulation of 

expression within each group.   
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2.2 Common cis-regulatory sequence elements within each expressional group 

Unique cis-regulatory elements common to genes within a transcriptional group, if found, 

may explain co-regulation and similar expression patterns. To address this issue, regarding 

our six expression groups,  we first created a file for each expression group, containing all of 

the gene promoter sequences in Fasta format. The length of the promoter region was 

defined as 1200 bp consisting of 1000 bp upstream to the transcription Initiation Site (TIS) 

and 200 bp downstream the TIS. The promoter region was extracted from the UCSC 

database, using the table application (NCBI37/mm9 assembly). Next, we used these lists as 

input in the Genomatix-MatInspector application (Cartharius et al., 2005) to search for 

matches against transcription factor (TF) recognition motifs. MatInspector is a software tool 

that utilizes a large library of matrix descriptions for transcription factor binding sites to 

locate matches in DNA sequences. The output of this application was a list of transcription 

factor families whose DNA recognition motifs are common to the promoters of the different 

expression groups. We defined a common TF family binding site as a motif which is 
  

 

Group6 Group5 Group4 Group3 Group2 Group1 TF 

* * * *   NKXH 

* * * * * * ETSF 

* * * *  * HOXF 

* * * * * * CREB 

   *   TBPF 

  * *   GATA 

* *  *  * FKHD 

* * * * * * NR2F 

 * * *  * EVI1 

   *   MZF1 

   * *  PAX6 

  * *   CLOX 

     * SORY 

* *   *  ZBPF 

  *    MYT1 

* * *  * * RXRF 

* * *  * * SP1F 

*  *  * * EGRF 

*  *   * MYBL 

*  *    MAZF 

*  *  * * E2FF 

Table 3. Common TF binding motifs in promoter sequences of genes within each expression 

group. An asterisk represents the presence of the specific transcription factor target 

sequence in at least 90% of the genes in that group. In yellow – TF common to all groups.  

In red -  TF common to only one group. 
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represented in at least 90% of the promoter sequences of each specific group (Table 3). We 

noticed that three transcription factor families, ETSF (Human and murine ETS1 factors), 

CREB (cAMP-responsive Element Binding proteins) and NR2F (nuclear receptor subfamily 2 

factor), were common to all groups, suggesting they are unlikely to be responsible for the 

differential expression pattern of any individual group. Of special interest were four TF 

families which appeared only in one group: TBPF (TATA-binding protein factors) in group 

3, MZF1 (Myeloid Zinc Finger 1 factors) also in group 3, SORY (Sox/Sry-sex/testis 

determining and related HMG box factors) in group 1 and MYT1 (MYT1 C2HC zinc finger 

protein) in group 4. TATA box binding protein (TBP) is a general transcription factor that 

plays an important role in transcription initiation of many genes. Various members of the 

TBP family have been identified, such as the TBP-related factors (TRFs) as well as numerous 

tissue-specific homologs of TBP-associated factors (TAFs) (Hochheimer & Tjian, 2003). TRF2 

(known also as TLP or TRP) has a testis-specific form which is first detectable at pn d14 

mouse testis and its level is increased at later stages of testicular development (Sugiura et al., 

2003). Our microarray results showed a rather similar pattern of expression for TRF2 (Figure 

2 – green line). Interestingly, four other genes of the TBP family (TBP, TAF1b, TAF9( 2 

probes) ,MED20) were present in our microarray list of meiotic regulated genes, all having 

the same pattern of increased level of expression from pn d12 (Figure 2). The similar 

expression pattern of these transcription factors through pn days 12-17 may suggest that 

they work together through the meiotic phase, and might account, at least in part, for the 

expression pattern of group 3.  

TBPF family genes

-1.2

-0.9

-0.6

-0.3

0

0.3

0.6

0.9

1.2

7 10 12 14 17

days

ra
ti

o

TBP

TAF1b

TRF2

TAF9

MED20

TAF9

 

Fig. 2. Expression pattern of members of the TBPF family of transcription factors during 
meiosis, as obtained in our microarray analysis. 

The specific binding motif for the myelin transcription factor 1 (Myt1) family appeared in 
the promoter sequences of more then 90% of genes of group 4. This family of transcription 
factors is comprised of three zinc finger genes: Myt1 (known also as Nzf2), Myt1L (known 
also as Png1), and Myt3 (known also as Nzf3 or St18). These transcription factors belong to 
the structurally unique CCHHC class, that are expressed predominantly in the developing 
Central Nervous System, CNS (Romm et al., 2005).  Nonetheless, in rat cells, Myt1 was 
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reported to interact with Sin3b, a protein that mediates transcriptional repression by binding 
to histone deacetylases (HDACs) (Romm et al., 2005). In our microarray results, the second 
member of the family, Myt1L, showed an increase in its expression between days 12 to 14, 
suggesting the potential involvement in regulating the characteristic transcriptional 
repression seen in group 4 between d14 and d17.  

The SORY TF family consists of high mobility group (HMG) genes from two subfamilies: 
HMGA and HMGB. This family includes the SRY gene as well as various SOX genes, all of 
which function as transcriptional activators. Some of these genes were reported to play a 
role during spermatogenesis. For example, Sox3 expression was shown to be restricted to 
type A spermatogonia and to be required for spermatogenesis through a pathway that 
involves Ngn3 (Raverot et al., 2005). Sox7 and Sox17 were reported to function 
synergistically in the transcription of the Mouse laminin-α1 gene during  differentiation of 
mouse F9 embryonal carcinoma cells into parietal endoderm cells (Niimi et al., 2004), and 
Hager et al. (2005) showed that laminin-α chains are vital for spermatogenesis. 
Notwithstanding, the expression pattern of some members of this family of transcription 
factors during meiosis, as depicted in our microarray analysis, do not intuitively favor 
specific involvement in transcriptional regulation of group 1 genes. Nevertheless, further 
analysis is required before definite conclusions are drawn.   

The MZF1 family represents the Myeloid zinc finger protein 1 (also known as Znf42, Mzf2, 
Zfp98, or Zfp121). It belongs to the Krüppel family of zinc finger proteins, and it was found to 
play a key role in regulating transcription during differentiation along the myeloid lineage 
(Yan et al., 2006). These authors also demonstrated that over-expression of MZF1 repressed the 
ERCC1 promoter activity upon cisplatin exposure, suggesting that MZF1 might be a repressor 
of ERCC1 transcription.  ERCC1 is a critical gene within the nucleotide excision repair 
pathway and only recently it was shown to play an essential role in DNA damage repair 
during spermatogenesis related recombination. Deficiency of this gene results in the 
production of abnormal sperm (Hsia et al., 2003; Paul et al., 2007). Our analysis revealed that 
only group 3 promoters met the limit of 90% representation of the Mzf1 TF binding site. The 
Mzf1 expression pattern itself was not revealed by our microarray analysis since it did not pass 
the stringent selection for genes exhibiting at least two-fold change in expression, compared to 
the geometric average, at any of the meiotic stages that were tested (Waldman Ben-Asher et al., 
2010). However, it is still very well possible that Mzf1 indeed plays a role in repressing 
expression of meiosis-related genes, such as those of group 3.  

Finally, it is, of-course, possible that the differential pattern of expression in each group is a 
result of a combinatorial co-regulation by several transcription factors. In this context it is 
noteworthy that none of the expressional groups share the same distribution of common TF 
motifs in their promoters (Table 3).   

3. Functional analysis of gene networks – Apoptosis as a test case 

Following the expression kinetics of genes, within specific gene networks, throughout meiosis, 
enables an insight as to how specific processes are operated and regulated during meiosis. In 
this study, we used apoptosis as a test case for such an analysis. Apoptosis plays a crucial role 
during spermatogenesis in general and meiosis in particular. It determines overall testicular 
cell load, balancing the proportion of the different cell types within the seminiferous tubules, 
and it plays a role in the removal of aberrantly differentiated meiotic spermatocytes and 
spermatids during and after meiosis (review in Print & Loveland, 2000).  
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A 

 

B 

 

Fig. 3. Apoptotic  expression maps  highlighting  in  red  genes  that  appear  in  our 6864  
present  sequences  (A),  and  in  green  genes  that  appear  in  our  790 regulated  sequences  
(B).  These  maps  were  obtained by applying  the “Gene Map Annotator and Pathway 
Profiler" program  to our microarray  results. 

Moreover, spermatocytes are unique in the sense that they “voluntarily” give up DNA 
integrity and undergo massive DNA breaks to enable synapsis of homologous 
chromosomes and crossing-over between them during meiosis. This puts conflicting 
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requirements on the cell. On the one hand, a situation in which each and every 
chromosome harbors several double strand breaks (DSB) favors activation of the 
apoptotic pathway. On the other hand, these breaks are physiologically induced and the 
cells must not be sentenced to death unless breaks are not properly repaired or chromatin 
is not properly organized. To get an insight as to how these conflicting requirements are 
balanced, we applied the “Gene Map Annotator and Pathway Profiler" program to our 
microarray results to characterize the apoptotic pathway during meiosis. Two expression 
maps were used: one representing the 6864 present sequences (genes whose expression 
was detected in our microarray analysis but did not pass the two-fold change selection), 
and the other representing the 790 regulated sequences (Figure 3). 33 genes from our 
“present” sequences, and 10 genes from the regulated list, lighted-up using this program 
(Figure 3A-B). These 10 genes included TNFR2, Bid, BimEl, c-Myc and CytCt (a testis 
specific isoform of cytochrome C), which have a generally accepted pro-apoptotic 
function, and IAP3, Bcl-2, Dffa and ATF5 generally known as anti-apoptotic genes. The 
tenth gene, JNK3, is part of the more general MAP kinase signal transduction pathway 
that can either promote apoptosis or survival through activation of c-Jun (Ham et al., 
2000; Kennedy & Davis, 2003). Following the specific expression pattern of these 10 
regulated genes (Figure 4), it is apparent that towards the zygotene stage (pn d12), the 
caspase inhibitor IAP3 is up-regulated, whereas CytCt level is low, a pattern that restricts 
apoptosis. It is also apparent that at early pachytene (pn d14) the anti-apoptotic gene, Bcl-
2, is up-regulated together with the anti apoptotic factor Dffa (Inhibitor of Caspase 
Activated DNase - ICAD), and BimEl, a mild negative regulator of Bcl-2. In contrast, as a 
mirror image, the pro-apoptotic genes Bid, which negatively regulates Bcl-2, and TNFR2, 
together with the anti-apoptotic transcription factor ATF5   (known also as ATFx), JNK3, 
and the caspase inhibitor IAP3 are down-regulated. This pattern is reversed by day 17. 
Thus, Bcl-2, Dffa and BimEl are down-regulated whereas Bid, TNFR2, IAP3, JNK3 and 
ATF5 are up-regulated. Note also that CytCt is up-regulated between pn d12 and pn d17.  

Apoptosis
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Fig. 4. Specific expression  patterns  of  the  ten  genes that were highlighted in the apoptotic 
expression map of the 790 regulated sequences. 
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By drawing two maps, one for the 6864 present sequences and one for the 790 regulated 

sequences, we could determine two groups of apoptotic genes, the operational 

background genes and the actively regulated genes. The operational background genes 

are those whose transcript level does not change much as meiosis proceeds, but if needed, 

are available to execute apoptosis. The actively regulated genes are those pro and anti 

apoptotic genes whose transcript levels fluctuate significantly during the various meiotic 

stages and create a delicate balance between apoptosis and survival. DSB first appear just 

before zygotene, between pn d10 and pn d12, to enable synapsis of homologous 

chromosomes and crossing-over (review in Hochwagen & Amon, 2006). At this stage, 

elevated levels of the caspase inhibitor, IAP3, and low levels of CytCt seem to restrict 

apoptosis. As cells progress to early pachytene, high levels of Bcl2 and Dffa, together with 

low levels of the negative regulator of Bcl2, Bid, seem to protect cells from apoptosis and 

facilitate crossing-over, subsequent repair and chromatin organization. At this stage 

CytCt increases, IAP3 decreases, and elevated c-myc might put cells on stand-by to 

execute apoptosis if something goes wrong. By pn d17, representing late pachytene, DSB 

are repaired, and any un-repaired cell must undergo apoptosis. This is reflected by the 

mirror image where high CytCt , elevated Bid, TNFR2 and ATF5 together with down 

regulation of Bcl2 and Dffa are apparent. These results suggest that during meiosis, a 

delicate interplay between anti and pro-apoptotic genes and their relative abundance in a 

given cell determine its fate to life or death. 

4. Comparing transcriptomes - A lesson to be learned 

One way to ascribe biological significance to microarray results is to compare data obtained 

in parallel experiments on different differentiative systems sharing common molecular 

processes. Given that B-cell differentiation and meiosis both share DNA rearrangement 

processes (V(D)J recombination and meiotic recombination, respectively) we reasoned that 

novel insights could be obtained by comparing our meiosis microarray results to a B-cell 

differentiation database. Hoffmann et al. (2003) have classified the differentially expressed 

genes during murine B cell development into 20 clusters according to their expression 

pattern along the 5 differentiative stages: Pre-BI, Large Pre-BII, Small Pre-BII, Immature B 

and Mature B cells, and used this cluster classification to compare gene expression between 

parallel developmental stages of B cells and T cells. We focused our attention on genes that 

were highly expressed in either Pre BI cells (clusters 1, 2, 3 and 5, in Hoffmann et al, 2003), 

which undergo V(D)J recombination of the heavy chain (especially V to DJ rearrangement), 

or in small Pre BII and immature B cells (clusters 9, 10, 11, 12, 16 and 17, in Hoffmann et al, 

2003) undergoing a second wave of rearrangement of the light chain (VL to JL). These genes 

were compared to meiotic genes up-regulated towards early pachytene (d14) when meiotic 

recombination occurs (groups 1, 2 and 3, in this study). For the comparison, the accession 

numbers of the 390 sequences contained within the three relevant meiotic clusters, as well as 

of the 955 sequences consisting of the relevant B-cell differentiation clusters (obtained from 

supplementary data provided by the authors in Hoffmann et al, 2003), were all translated to 

new Affymetrix accession numbers to form a common identification base. Following this 

analysis, 11 genes emerged from the cross between the meiotic genes and the Pre BI specific 

genes, and additional 10 genes from the comparison between the meiotic genes and the 

genes up-regulated in small Pre BII and immature B cells (Figure 5). A more in-depth 
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observation at some of these genes raises interesting insights as to some of the molecular 

pathways operating in these processes.  

4.1 Rad54l and HOP2   

Up-regulation of Rad54 and Hop2 (genes characteristic of the homologous recombination 

DNA repair pathway) during meiosis was not unexpected since the heterodimer Hop2-

Mnd1, as well as Rad54, are known to physically interact with the recombinases Rad51 or 

Dmc1 during meiotic recombination and to stimulate their activity by facilitating the 

DNA-strand-invasion step, a key step in the homologous recombination process 

(Petukhova et al, 2005; Sung & Klein, 2006). On the other hand, V(D)J recombination 

during B-lymphocyte differentiation is thought to occur through the Non-Homologous 

End Joining (NHEJ) pathway, and hence up-regulation of these genes was less expected. 

Moreover, Essers et al., (1997) showed that RAD54-/- mice are viable and exhibit 

apparently normal V(D)J and immunoglobulin class-switch recombination. Nevertheless, 

up-regulation of these genes specifically during V(D)J recombination suggests that they 

might indeed play some role in NHEJ processes, and that in the absence of Rad 54 there 

might be compensating genes that function. If this is the case, Rad54 joins other 

homologous recombination DNA repair genes, such as the MRN complex (Mre11, Rad50 

and Nbs1) and BRCA1, that were found to play a role in the NHEJ pathway as well 

(Durant & Nickoloff, 2005; Sancar et al, 2004).  

4.2 Mog1 and Ranbp5  

These two genes are involved with Ran-GTP-dependent nuclear / cytoplasmic transport of 

proteins. Mog1 is a nuclear protein that stimulates the release of GTP from Ran, forming a 

Mog1-Ran complex which stabilizes Ran in a nucleotide-free form thereby modulating 

nuclear levels of RanGTP (Steggerda & Paschal, 2000; Baker et al, 2001). Ranbp5 is an 

importin β related protein (also known as importin β3) that acts in a nucleocytoplasmic 

transport pathway that is distinct from the importin-alpha-dependent import of proteins 

(Deane et al, 1997). Both genes were previously reported to be expressed during 

spermatogenesis (Li et al, 2005; Loveland et al, 2006) but the fact that both are up-regulated 

during DNA rearrangement processes might hint that their target proteins for 

nucleocytoplasmic transport are involved with DNA rearrangement.  

4.3 p107  

One process that a cell undergoing DNA rearrangement must avoid is cell division. It is, 
therefore, expected that during physiological rearrangement processes cells would repress 
cell cycle promoting genes. p107, a member of the Rb pocket protein family of cell cycle 
regulators, forms repressive complexes with either E2F4 or E2F5 (Iaquinta & Jacqueline, 
2007). Such complexes have been detected by ChIP analyses in many E2F-responsive 
promoters of G0 cells, ensuring they do not divide. Moreover, recruitment of HDACs 
(histone deacetylases) to these complexes further ensures that these important cell cycle 
genes stay silent (Cobrinik, 2005). Up-regulation of p107 in differentiating meiotic and B-
cells, might, therefore, play a role in silencing cell division genes until DNA rearrangement 
processes has been successfully completed. 
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Gene symbol Gene name 

Hop2 Homologous pairing 2 

Rad54l RAD54 like 

Mog1 Ran binding protein 

Ranbp5 Ran binding protein 5 

Smc4l1 Structural maintenance of 
chromosome 4-like 1  

C1qbp Complement component 1,q-
subcomponent binding protein 

Tuba7 Tubulin α7 

Pebp1 Phosphatidylethanolamine 
Binding protein 

Rbl1 Retinoblastoma-like protein 1 
(p107) 

Anp32e Acidic (leucin-rich) nuclear 
phosphoprotein 32 family, 
member E  

Mpeg1 Macrophage expressed gene 1 

Gene symbol Gene name 

Cxcr4 Chemokine (C-X-C motif) 
receptor 4 

B4galnt1 Beta-1,4-N-acetyl-
galactosaminyl transferase 

Prtn3 Proreinase 3 

Fech Ferrochelatase 

β2AR β-2-adrenergic receptor 

Acyp1 Acylphosphatase1, erythrocyte 
(common) type 

Igh-6 Immunoglobulin heavy chain 
6 (heavy chain of IgM) 

Slc2a3 Solute carrier family 
2(facilitated glucose 
transporter member 3) 

Trim11 Tripartite motif protein 11 

HSP70.2 Mouse heat-shock-like protein 
70.2 

Genes up-regulated during 

meiotic recombination (post 

natal days 12 to 14)- groups 

1,2 and 3. 

Genes highly expressed in 

small pre-BII and immature 

B- cells undergoing DNA 

rearrangement of light chain.    

Genes highly expressed 

in pre-BI cells 

undergoing V(D)J 

recombination 

 

Fig. 5. Comparison  between  genes  up-regulated  towards  the  early pachytene  stage (pn 
d14) where spermatocytes undergo meiotic recombination (groups 1, 2 and 3 in this  study),  
and  genes  up-regulated  in  pre-BI  or  in  small  pre-BII  and immature B-cells, undergoing 
V  to DJ  rearrangement  of  the  heavy  chain and VL  to JL  rearrangement of  the  light 
chain,  respectively, during B-cell differentiation.  The  “B-cell  differentiation”  data  was  
obtained  from microarray data sets and clustering as reported by Hoffmann et al. (2003).  

4.4 SMC4  

In eukaryotes, the Structural Maintenance of Chromosome (SMC) proteins constitute a 
family of six highly conserved members of chromosomal ATPases, involved in 
chromosomal structural dynamics (review in Hirano, 2006). These SMC proteins form 
different complexes based on three SMC heterodimers. SMC1 and SMC3 form a 
heterodimer that, together with two other non–SMC subunits, form the cohesion complex 
which keeps sister chromatids together from S-phase until anaphase, when they are 
separated into two daughter cells. SMC2 and SMC4, form a heterodimer that together 
with three other non–SMC subunits compose the condensin complex, which plays an 
important role in mitotic/meiotic chromosomes condensation, as well as in non-mitotic 
chromatin condensation processes. A third pair of SMC subunits, SMC5 and SMC6, is 
thought to be essential for genomic integrity and DNA damage response (Hirano, 2006; 
De Piccoli et al., 2009). These latter SMC sub-units were reported to be highly expressed in 
the testes of mammals, together with a recently identified meiosis-specific SMC1 related 
protein (SMC1β) that was suggested to be crucial for completion of meiosis in mammals 
(Revenkova et al, 2004; Hirano, 2006). It is therefore interesting that among all SMC 
proteins, it is the SMC4 related protein that was identified in our comparison. This might 
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suggest that SMC4, as part of the condensin complex is important for the DNA 
rearrangement processes. Indeed, some DNA repair roles have recently been attributed to 
cohesins and condensins, in addition to their traditional function, with condensins being 
involved specifically with single-strand break repair (Coldecott 2008; De Piccoli, 2009). 
This might imply that although DNA rearrangement consists basically of double strand 
breaks, single-strand break repair processes might also take place during rearrangement. 
Alternatively, condensins might play a role in DNA repair processes other then that of 
single-strand breaks. It is also possible, of-course, that SMC4 plays an as yet unknown 
role that has not been characterized to date. 

4.5 Cxcr4 

This gene encodes the chemokine receptor 4, a G-protein-coupled receptor for the CXCL12 
chemokine (known also as SDF-1). Upon activation, this receptor mediates several biological 
activities, among which are the migration of primordial germ cells to the gonads 
(Molyneaux et al, 2003; Stebler et al, 2004), retention of primordial follicles in an un-
activated state in the neonatal mouse ovary (Holt et al, 2006), and the retention of 
differentiating B cells in the bone marrow until maturation (Palmesino et al, 2006). Upon 
stimulation, CXCR4 has also been reported to induce the MAP-kinase cascade and the 
PI3/PKB pathway, which may elicit an anti-apoptotic response (Palmesino et al, 2006). The 
activated expression of Cxcr4 in both differentiating B lymphocytes in the bone marrow and 
during meiosis in the testis might suggest the intriguing possibility that it plays a somewhat 
similar role in the testis, i.e. retention of spermatocytes within the seminiferous epithelium 
until maturation (completion of meiosis and spermiogenesis) has been completed. 
Alternatively, it is also possible that it acts as a survival factor during meiosis.  

4.6 β-2-adrenergic receptor (β2AR) 

A disturbing unresolved discrepancy exists between the important role ascribed to the 
follicle-stimulating hormone (FSH) during spermatogenesis and the apparent lack of 
phenotype seen in FSH KO mice (review in Huhtaniemi, 2006). FSH binds to and activates 
the FSH receptor (FSHR) on Sertoli cells, which in turn utilize the cAMP / PKA signaling 
pathway to activate the CREB transcription factor. CREB activation is crucial for the ability 
of Sertoli cells to nurture primary spermatocytes and to support their survival. Expression of 
a dominant negative form of CREB in Sertoli cells resulted in apoptosis of spermatocytes 
(review in Don & Stelzer, 2002). Our results regarding the expression of β2AR, might 
provide at least a partial explanation to this discrepancy. On the one hand the β2AR was 
shown to activate the cAMP- PKA- CREB pathway in B-cells (Kin & Sanders, 2006). On the 
other hand, it was reported to be expressed in Sertoli cells of immature rats (Jacobus et al, 
2005), although there are no data available as to its expression in Sertoli cells of mature 
animals. Our results demonstrating up-regulation of β2AR during meiosis suggest it might 
activate the cAMP- PKA- CREB pathway in Sertoli cells and hence compensate, at least 
partially, for the absence of FSH in the KO models. This hypothesis must, however, be 
experimentally tested. 

In conclusion, the comparison between genes activated during B-cell differentiation and 
meiotic differentiation has focused our attention on several common genes, some of which 
shed light on novel molecular aspects of spermatogenesis in general, and of meiosis in 
particular.  
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5. Conclusions 

The microarray technology has revolutionized the area of gene expression research by 
providing enormous amounts of transcriptome / proteome / phosphoproteome data, and 
enabling comparison  between data sets representing the same tissue in different organisms, 
different tissues within the same organism or different treatments or conditions within a 
specific tissue or cell-type. The challenge in analyzing such experiments is to put these data in 
order and to extract the biological significance of it. In this study we used various 
bioinformatics tools in an attempt to ascribe biological significance to our microarray results, 
comparing the transcriptome of the mouse testis at five post-natal developmental ages 
representing different meiotic stages of the first spermatogenic wave.  We found that 
chromosomal location of genes (but not clustering within a specific chromosome) could be a 
factor in determining specific patterns of gene expression during meiosis. Furthermore, we 
determined the distribution of common TF binding motifs in promoter sequences of genes 
within each of the six expressional groups that were determined (representing six major 
patterns of expression), pointing at specific transcription factors (or combination of 
transcription factors) that might contribute to the co-regulation of gene expression within each 
group. Expression kinetic analysis of gene networks is an important way of ascribing 
biological significance to microarray results.  Using apoptosis as a test case we demonstrated 
herein how by a timely interplay between pro and anti apoptotic genes the delicate balance 
between the need to enable DNA breaks for pairing and recombination and the need to 
discard cells that their DNA has not been properly repaired, is kept. Finally, by comparing 
genes that are up-regulated during meiotic recombination, to genes up-regulated during DNA 
rearrangement in differentiating B-cells,  we were able to get some new ideas regarding genes 
and molecular pathways operating during meiosis. Nevertheless, we have described only the 
tip of the iceberg of what could be concluded from our data, as well as from data obtained in 
corresponding studies executed by other groups, and most importantly, by the combined 
analyses of all these data sets. Further analysis and interpretations must await further studies. 
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