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Abstract How lifespan and the rate of aging are set is a key problem in biology. Small RNAs are

conserved molecules that impact diverse biological processes through the control of gene

expression. However, in contrast to miRNAs, the role of endo-siRNAs in aging remains unexplored.

Here, by combining deep sequencing and genomic and genetic approaches in Caenorhabditis

elegans, we reveal an unprecedented role for endo-siRNA molecules in the maintenance of

proteostasis and lifespan extension in germline-less animals. Furthermore, we identify an endo-

siRNA-regulated tyrosine phosphatase, which limits the longevity of germline-less animals by

restricting the activity of the heat shock transcription factor HSF-1. Altogether, our findings point

to endo-siRNAs as a link between germline removal and the HSF-1 proteostasis and longevity-

promoting somatic pathway. This establishes a role for endo siRNAs in the aging process and

identifies downstream genes and physiological processes that are regulated by the endo siRNAs to

affect longevity.

Introduction
Aging is a major risk factor for chronic age-related diseases, which have become a major cause of

death in the elderly (Matus et al., 2011). Such pathologies and aging share a common set of basic

biological mechanisms, including a failure to maintain the homeostasis of the proteome (proteosta-

sis) with age. Given the high conservation of the aging and proteostasis-promoting pathways

between low and high organisms, analysis of these pathways in Caenorhabditis elegans has proven

to be valuable for the understanding of aging and proteostasis in all animals, including mammals.

Dedicated signaling pathways, which coordinate cellular processes that maintain protein homeo-

stasis, have evolved to prevent the grave consequences associated with the accumulation of mis-

folded proteins (Taylor et al., 2014). These pathways are triggered by the accumulation of

misfolded proteins in different cell compartments and initiate processes that maintain a functional

protein-folding environment by controlling translation rate, increasing expression of chaperones,

and enhancing the protein degradation machinery.

In the cytoplasm, the proteostasis stress response pathway is governed by the transcription factor

HSF1 (Akerfelt et al., 2010). In C. elegans, HSF-1 overexpression is sufficient for extending lifespan

and is important for lifespan extension by most longevity pathways (Hsu et al., 2003; Baird et al.,

2014; Morley and Morimoto, 2004). Although the proteostasis stress response pathways assure

proteome homeostasis in young animals during development, they lose responsiveness and fail to

protect the proteome of aging animals (Shemesh et al., 2013; Labbadia and Morimoto, 2015;
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Taylor and Dillin, 2011). This may increase the risk for protein conformational diseases, such as Alz-

heimer’s disease, Huntington’s disease, Parkinson’s disease etc. (Matus et al., 2011; López-

Otı́n et al., 2013).

Consistent with the importance of proteostasis maintenance for proper health and function,

mutations and treatments that extend lifespan and healthspan maintain proteostasis in aging ani-

mals. Improved proteostasis can be achieved by boosting protein degradation pathways in the soma

(Safra et al., 2014; Henis-Korenblit et al., 2010; Vilchez et al., 2012), or by postponing the age-

dependent decline in the responsiveness of the stress responses (Shemesh et al., 2013;

Labbadia and Morimoto, 2015).

In C. elegans (Hsin and Kenyon, 1999) and Drosophila (Flatt and Schmidt, 2009), germline

depletion extends lifespan. Likewise, lifespan extension can result from ovarian transplantation

experiments in mice (Mason et al., 2009) and castration in men (Min et al., 2012). These suggest

that reproductive control on lifespan might be conserved in mammals as well. In addition to extend-

ing lifespan, germline depletion also promotes proteostasis. The improved proteostasis of germline-

less C. elegans is achieved by reducing the repressive chromatin marks at HSF1-regulated stress-

responsive genes. In turn, the removal of repressive chromatin marks delays the age-dependent col-

lapse of the proteostasis promoting pathways (Shemesh et al., 2013; Labbadia and Morimoto,

2015).

Studies of the last decade identified about a dozen genes that function in the C. elegans repro-

ductive-longevity pathway. Many of these genes encode or regulate transcription factors, which are

activated in the intestine upon germline removal. Little is known about how depletion of germline

stem cells regulates these transcription factors, with the exception of DAF-16 (Antebi, 2013). The

germline-regulated transcription factors remodel the transcriptional landscape in germline-less ani-

mals. Germline-regulated genes are enriched in proteostasis, innate immunity, and metabolism-

related genes, altering the physiology of the animals and promoting longevity (McCormick et al.,

2012). Accordingly, germline depletion enhances oxidative stress resistance and immunity

(Alper et al., 2010; Libina et al., 2003), modulates fat metabolism (Wang et al., 2008;

Ratnappan et al., 2014; Steinbaugh et al., 2015), induces autophagy (Lapierre et al., 2013), and

boosts proteostasis-related stress responses in aging animals (Shemesh et al., 2013).

Small RNAs and their Argonaute cofactors are conserved components of eukaryotic organisms.

Along with transcription factors and transcription regulators, the small RNA silencing pathways

impose a layer of gene regulation, which affects diverse biological processes. This is achieved by the

generation of short antisense RNAs that act in the cytoplasm, where they interfere with gene expres-

sion by inhibiting translation, by degrading cytoplasmic mRNA, or by altering mRNA storage

(Grishok, 2013). Short antisense RNAs also target chromatin modifications in the nucleus, generat-

ing epigenetic changes (Burton et al., 2011). In C. elegans, small RNAs can move between tissues

(Winston et al., 2002) and be passed along several generations (Rechavi and Lev, 2017).

The three main endogenous small RNA pathways in C. elegans include miRNAs, endogenous

small interfering RNAs (endo-siRNAs), and PIWI (P-element-induced wimpy testis) interacting RNAs

(piRNAs). Each of these pathways uses RNAs with different characteristics and involves both distinct

and overlapping enzymes and Argonautes. Although small noncoding RNAs impact many biological

processes, in the context of aging, studies mainly focused on miRNAs. Multiple studies followed the

age-associated changes in expression of miRNAs in C. elegans (Kato et al., 2011; de Lencastre

et al., 2010; Aalto et al., 2018; Ibáñez-Ventoso, 2006). Furthermore, life-extending and life-short-

ening properties have been attributed to specific miRNAs (Shen et al., 2012; Boulias and Horvitz,

2012; Boehm and Slack, 2005) and miRNA-dedicated Argonautes (Aalto et al., 2018). These

include several miRNAs that facilitate the localization and transcriptional activity of DAF-16 in the

intestine of germline-less animals (Shen et al., 2012; Boulias and Horvitz, 2012).

In contrast to miRNAs, much less is known about the physiological roles of naturally-produced

endogenous siRNAs that align and complement multiple coding and non-coding loci across the

genome (Blumenfeld and Jose, 2016; Gu et al., 2009). Thus far, endo-siRNAs in C. elegans have

been primarily implicated in immune surveillance (Fischer, 2010; Rechavi et al., 2011) and the trans-

fer of stress resistance between generations (Rechavi et al., 2014; Kishimoto et al., 2017). Never-

theless, the functional role of endo siRNAs in the regulation of aging remains largely unexplored.

This is in spite of the fact that a study of global small RNA profiling over the course of C. elegans

aging identified an age-dependent increase in the expression of different endo-siRNA (Kato et al.,
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2011). Furthermore, another study reported that endo-siRNAs regulate the lifespan of the fly

(Lim et al., 2011). Here, by combining deep sequencing and genomic and genetic approaches in C.

elegans, we have established a role of endo-siRNAs in lifespan extension and the regulation of the

proteostasis-promoting transcription factor HSF-1 in germline-less animals and have also identified

direct and indirect aging-related targets of this silencing pathway.

Results

Endo-siRNAs contribute to the longevity of germline-less animals
To examine if endo-siRNAs are implicated in the longevity of germline-less animals, we made use of

the well-characterized dcr-1(mg375) C. elegans mutant strain (Welker et al., 2010). Dicer is a mem-

ber of the RNase III family of nucleases that degrade double-stranded RNA (dsRNA). Dicer processes

exogenous dsRNA as well as endogenous dsRNA of which miRNAs and endo-siRNAs are produced.

Unlike most dcr-1 alleles that interfere with the processing of a variety of small RNAs, dcr-1(mg375)

mutants have a point mutation in the helicase domain of the dicer enzyme. This point mutation dis-

rupts the processing of a subset of endo-siRNAs, without affecting the processing of other small

RNA molecules (Welker et al., 2010). To limit germline proliferation, we made use of glp-1(e2144)

mutants, which carry a temperature-sensitive notch receptor required for germline stem cells (GSC)

proliferation (Priess et al., 1987). For simplicity, we will refer henceforth to germline-less glp-1 ani-

mals raised at the restrictive temperature as GSC(-) animals.

First, we generated dcr-1(mg375) glp-1 double mutants and followed their lifespan when raised

from eggs to adulthood at restrictive temperature. As expected, glp-1 GSC(-) animals exhibited

extended lifespan compared to wild-type animals (Figure 1A). However, we found that the dcr-1

(mg375) mutation shortened the lifespan of GSC(-) animals to a greater extent than in animals with

an intact germline (Figure 1A and Supplementary file 1). Similarly, limiting germline expansion by

dietary supplementation of dihomo-g-linolenic acid (DGLA) (Watts and Browse, 2006) extended the

lifespan of wild-type animals (Shemesh et al., 2017; O’Rourke et al., 2013), but failed to extend

the lifespan of dcr-1(mg375) mutants (Figure 1B and Supplementary file 1). Together, these find-

ings imply that endo-siRNAs that depend on the helicase activity of dicer may be implicated in lon-

gevity induced by germline removal.

We then examined if mutations in additional components, which are specifically required for the

processing of endo-siRNA but not directly implicated in the processing of other small RNAs,

affected the lifespan of GSC(-) animals. To this end, we generated glp-1 double mutants with muta-

tions in the rrf-3, ergo-1, and nrde-3 genes. rrf-3 encodes an RNA-directed RNA polymerase (RdRP),

which uses single-stranded RNA as template for second-strand synthesis (Gent et al., 2010). ergo-1

encodes an endo-siRNA-specific Argonaute, which stabilizes the initial class of 26G endo-siRNAs

(Vasale et al., 2010). NRDE-3 is an Argonaute that functions in nuclear RNA interference (RNAi)

(Guang et al., 2008). In all cases, the lifespan extension conferred by germline removal was signifi-

cantly curtailed by mutations that perturbed different steps in the processing of endo-siRNAs, with

less of an effect on the lifespan of animals with an intact reproductive system (Figure 1C–E and

Supplementary file 1). The finding of similar shortening of the lifespan of GSC(-) animals by multiple

mutations that affect endo-siRNA processing strongly implicates endo-siRNAs in the lifespan exten-

sion of GSC(-) animals. Furthermore, this reduces the likelihood that the observed differences in life-

span are due to background mutations in non-outcrossed strains dcr-1(mg375) and nrde-3(gg66).

Thus, we conclude that the processing of a subset of siRNAs, whose processing is dcr-1 helicase, rrf-

3, ergo-1, and nrde-3-dependent, contributes to the lifespan extension of GSC(-) animals.

In C. elegans, small RNA molecules spread between cells via SID-1 dsRNA channels (Shih and

Hunter, 2011). To explore if endo-siRNAs act in a hormonal-like fashion to promote longevity, we

examined whether the longevity of GSC(-) animals is dependent upon SID-1 channels. We found that

GSC(-) glp-1; sid-1 double mutants were long-lived similarly to GSC(-) glp-1 single mutants

(Figure 1F and Supplementary file 1). Thus, there was no need for SID-1-dependent uptake of the

endo-siRNA molecules by neighboring cells for the longevity of glp-1 mutants. This could be either

because the silencing takes place in the same cells that produce the lifespan-regulatory small RNA

molecules, or because an alternative RNA channel mediates the spread of the endo-siRNAs between

tissues.
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Endo-siRNAs promote chaperone expression in GSC(-) animals
Germ cell depletion results in significant remodeling of the animal’s transcriptome, promoting the

expression of genes that drive proteostasis, autophagy, innate immunity, lipid metabolism and more

(Antebi, 2013). In order to identify which downstream physiological processes are hindered by the

depletion of endo-siRNA in GSC(-) animals, we compared the mRNA transcriptomes of GSC(-) ani-

mals and wild-type animals upon interference with the processing of endo-siRNA. Even though

Figure 1. Endo-siRNAs are required for the longevity of GSC(-) animals. (A,C–E) Impairment of the endo-siRNA

pathway by dcr-1(mg375), rrf-3(pk1426), ergo-1(gg98), or nrde-3(gg66) compromises the longevity of glp-1

mutants. (B) The longevity conferred by germline depletion via DGLA supplementation is perturbed by the mg375

mutation in the dcr-1 helicase domain. (F) Impairment of the dsRNA channel sid-1(pk3321) does not compromise

the longevity of glp-1 mutants. Breslow (Generalized Wilcoxon) P-values between endo-siRNA mutants and

corresponding animals with intact endo-siRNA are indicated between GSC(+) animals (in orange) or between GSC

(-) animals (in red). See Supplementary file 1. Note that the dcr-1 and nrde-3 mutants have not been outcrossed.

This may affect their lifespan phenotypes.
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mutations in several endo-siRNA related genes affected the lifespan of GSC(-) animals, we per-

formed this analysis using the dcr-1(mg375) point mutation, due to its relative focused effect on only

a subset of endo-siRNAs molecules (Welker et al., 2010).

We first focused on a group of 72 genes whose mRNA levels consistently decreased by more

than 1.5 fold (p-value<0.05) in dcr-1 glp-1 double mutants compared to glp-1 single mutants

(Supplementary file 2). Since siRNAs downregulate gene expression (i.e., lack of siRNA results in

upregulation of their target genes), these genes cannot be direct targets of the siRNA pathway.

However, their altered expression upon siRNA inactivation may point out downstream processes

affected by the siRNA activity. A protein-protein interaction network of these 72 genes using

STRING (Szklarczyk et al., 2019) highlighted a group of 10 interacting genes, composed mostly of

chaperone-encoding genes (Figure 2—figure supplement 1). GO enrichment analysis

(Ashburner et al., 2000) of the 72 genes identified enrichment in genes related to cellular response

to unfolded proteins as relatively down-regulated in the dcr-1 glp-1 double mutants (p-val-

ue<1*10�4, Supplementary file 3). Interestingly, out of the group of 72 genes, 15 genes are known

to be upregulated in an hsf-1-dependent manner upon heat shock (Brunquell et al., 2016). This is a

significant enrichment in the amount of HSF-1-regulated genes, more than expected by chance (chi-

square with yates correction p-value<1*10�4). We confirmed the downregulation of three of these

genes in dcr-1 glp-1 double mutants compared to glp-1 mutants by qRT-PCR (Figure 2A). We

hypothesize that the growth conditions of the animals at 25 degrees from eggs to adulthood, after

prior cultivation in 20 degrees, resulted in a mild heat shock response, allowing the detection of

heat-induced genes. Together, these results suggest that in the absence of some endo-siRNAs,

expression of a set of cytosolic chaperones and additional HSF-1-regulated genes is compromised in

GSC(-) animals.

Endo-siRNAs are required for activation of the heat shock response in
GSC(-) animals
Our data indicate that endo-siRNAs are important for the expression of a set of HSF-1 target genes

in adult GSC(-) animals. Hence, we first checked if there was a decrease in HSF-1 protein levels in

dcr-1 glp-1 animals compared to glp-1 animals. Analysis of the levels of endogenous HSF-1 protein

in these mutants demonstrated that HSF-1 levels were higher in GSC(-) animals compared to wild-

type animals (p=0.004, Figure 2B). Furthermore, HSF-1 levels were not reduced upon dicer inactiva-

tion in GSC(-) animals (in fact HSF-1 levels were higher in dcr-1 glp-1 double mutants compared to

glp-1 single mutants in 5/7 experiments, p=0.054, Figure 2B). These results demonstrate that endo-

siRNAs are not required for HSF-1 expression in GSC(-) animals.

We next checked whether the endo-siRNA pathway affected HSF-1 activation. One hallmark of

HSF-1 activation upon heat-shock is its rapid redistribution into sub-nuclear structures, which share

many properties with human nuclear stress granules (Morton and Lamitina, 2013). The formation of

these foci is dependent upon the DNA binding domain of HSF-1 and they co-localize with markers

of active transcription. We used the same single copy HSF-1::GFP translational fusion strain to follow

its organization into foci in different genetic backgrounds. As reported (Morton and Lamitina,

2013), under non-stress conditions, HSF-1::GFP was found primarily in the nucleus but not in foci.

Following a 10 min heat shock, day three wild-type animals had on average two foci per hypodermal

cell. In long-lived glp-1 animals, we observed increased levels of these foci under heat shock condi-

tions (on average 3.6 foci per hypodermal cell). In contrast, GSC(-) animals impaired in their endo-

siRNA pathway had only 1.4 foci on average per hypodermal cell (Figure 2C–D). These results dem-

onstrate that dcr-1-dependent endo-siRNA molecules are required for HSF-1 foci formation upon

heat shock in GSC(-) animals.

Endo-siRNAs are required for proteostasis maintenance in GSC(-)
animals
A low amount of chaperones and reduced ability of HSF-1 to form foci may render dcr-1 glp-1 ani-

mals sensitive to proteostasis challenges. To test this, we exposed late day two animals to a pro-

longed heat shock and followed their survival after a recovery period. As reported (Shemesh et al.,

2013; Libina et al., 2003), glp-1 animals were more resistant to heat shock than were wild-type ani-

mals. While 71% of the glp-1 animals survived the heat shock, only 38% of the wild-type animals
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survived the same stress (Figure 3A,P-value<0.001). Strikingly, the dcr-1 glp-1 mutants were sensi-

tive to the heat shock, similar to the wild-type animals, with only 39% survival (Figure 3A,P-

value=0.99). Similar sensitivity to heat shock was observed upon perturbation of the endo-siRNA

pathway in glp-1 mutants by a mutation in the rrf-3 gene (Figure 3B). The finding of

similar sensitivity of GSC(-) animals to heat stress by two independent mutations that affect endo-

siRNA processing strongly implicates endo-siRNAs in the heat shock resistance of GSC(-) animals.

Figure 2. Endo-siRNAs are required for HSF-1 activation in GSC(-) animals. (A) qRT-PCR of the indicated genes on day 1 of adulthood. Asterisks mark

Student’s t-test values of p value<0.05 (N = 4). Note that the dcr-1 mutation reduced the transcript levels of all three chaperone genes in GSC(-)

animals, consistent with the possibility that the activity of their upstream transcription factor HSF-1 has been compromised. Interestingly, the dcr-1

mutation also affected the levels of the f44e5.5 transcript in GSC(+) animals. Nevertheless, it did not significantly affect the transcript levels of the hsp-

16.2 and hsp-12.6 chaperones in GSC(+) animals. Given that HSF-1 and some of its targets are expressed also in the germline (Ooi and Prahlad, 2017),

to avoid biases due to the presence/absence of the germline tissue, comparisons should be made within GSC(-) animals or within GSC(+) animals

(McCormick et al., 2012; Steinbaugh et al., 2015). See also Figure 2—figure supplement 1 and Supplementary file 2 and Supplementary file 3.

(B) Representative western blot of endogenous HSF-1 in day one animals (upper panel) compared to loading control (lower panel). Boxplots represent

the distribution of normalized HSF-1 levels per strain. Different shapes represent independent experiments (N = 7). P-values of One-Sample Test and

One-Way ANOVA followed by Tukey’s post hoc analysis across all seven experiments are indicated. See Supplementary file 8 for statistic details. (C)

Bars represent mean of means of the number of HSF-1::GFP nuclear foci per hypodermal cell. Dots represent mean number of HSF-1 foci per cell with

different shapes representing independent experiments. At least 140 cells per genotype were scored in a total of 3 independent experiments. P-values

determined by One-Way ANOVA followed by Tukey’s post hoc analysis are indicated. Data are presented as mean ± SEM. See Supplementary file 8

for statistic details. (D) Representative fluorescent micrographs of hypodermal cell nuclei in day three adults, harboring a single copy of the Phsf-1::hsf-

1::gfp transgene upon heat shock stress. Exposures and contrast were adjusted for each picture independently to best emphasize foci amount. Nucleus

boundaries are circled.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. String analysis of 72 genes whose levels decreased by more than 1.5 fold in dcr-1 glp-1 double mutants compared to glp-1

mutant.
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Furthermore, this reduces the likelihood that the observed differences in heat sensitivity are due to

background mutations in the non-outcrossed dcr-1(mg375) strain.

Expression of toxic aggregating proteins such as Poly-Q rich proteins perturbs proteostasis. Spe-

cifically, the expression of these toxic proteins in the muscle cells causes the animals to undergo

age-dependent loss of motility (Morley et al., 2002). Hence, we examined the motility of wild-type

and GSC(-) animals, expressing toxic poly Q35 fused to YFP in their muscles in the presence or

absence of an intact endo-siRNA pathway. The motility of the animals was determined by the num-

ber of swimming strokes they performed when placed in liquid on day 5 of adulthood. As reported

(Shemesh et al., 2013; Labbadia and Morimoto, 2015), wild-type Q35 animals showed reduced

motility compared to their GSC(-) Q35 counterparts (Figure 3C). Perturbation of the endo-siRNA

pathway by a point mutation in the dcr-1 gene reduced the motility of glp-1 mutants to the level of

wild-type animals (Figure 3C). Altogether, these experiments suggest that endo-siRNA molecules

contribute to the superior proteostasis state of GSC(-) animals.

Finally, we also asked whether endo-siRNAs contributed to proper protein folding. For this pur-

pose, we used the unc-52(e669su250) allele, harboring a temperature-sensitive point mutation in the

unc-52 gene. This strain is an established folding reporter reflecting an age-dependent decline in

motility under permissive temperature (Ben-Zvi et al., 2009). We monitored unc-52(ts)-dependent

paralysis on day 4 of adulthood in different genetic backgrounds. At this time-point, only 20% of the

Figure 3. Endo-siRNAs are required for proteostasis maintenance in GSC(-) animals. (A–B) Thermo-resistance was examined in age-synchronized

animals subjected to heat shock (37˚C, 9 hr) on day 2 of adulthood. Survival was assayed after 5 hr of recovery at 25˚C (120 animals per treatment,

N = 3). Asterisks mark Cochran-Mantel-Haenszel Test values of p<0.001. (C) Bars represent mean of the percentage of motile animals scored in age-

synchronized day 5 Q35m or glp-1;Q35m animals (more than 45 animals per treatment, N = 3). Different shapes represent mean motility in

independent experiments. Asterisks mark p-values<0.001 determined by One-Way ANOVA followed by Tukey’s post hoc analysis. (D) Bars represent

mean of means of the number of body bends per minute in age-synchronized day four unc-52(ts) animals. Animals were raised at 25˚C till day 1 of

adulthood, and shifted to the permissive temperature (15˚C) thereafter. A total of 180 animals per strain were scored in three independent experiments.

Different shapes represent mean motility in independent experiments. Asterisks mark Cochran-Mantel-Haenszel test values of p<0.001. Data are

presented as mean ± SEM. See Supplementary file 8 for statistic details.
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unc-52(ts) animals were motile, whereas the glp-1 mutation rescued unc-52(ts)-dependent paralysis

in 80% of the animals (Figure 3D,P-value<0.001). Perturbation of the endo-siRNA pathway by a

mutation in the dcr-1 gene partially reduced the motility of glp-1 mutants (Figure 3D,P-

value<0.001). This suggests that endo-siRNAs are required for some aspects of correct protein fold-

ing in adult GSC(-) animals.

Identification of endo siRNA-regulated genes in GSC(-) animals
We next set out to identify potential direct and indirect targets affected by endo-siRNA in GSC(-)

animals. To this end, we compared both the mRNA transcriptomes and the siRNAs of GSC(-) animals

in the presence or absence of the dcr-1(mg375) point mutation.

We predicted that direct mRNA targets of the endo-siRNA would be present at low levels in GSC

(-) animals but stabilized when dicer activity is disrupted. We identified a group of 132 genes whose

levels consistently and significantly increased by more than 1.5 fold (p-value<0.05) in dcr-1 glp-1

double mutants compared to that of glp-1 animals with wild-type dicer activity (Supplementary file

4). 84 of these genes were previously reported as regulated by endo-siRNAs (Asikainen et al.,

2007; Supplementary file 4), attesting to the validity of our data. A protein-protein interaction net-

work of these 132 genes using STRING (Szklarczyk et al., 2019) highlighted a group of 64 interact-

ing genes whose interaction was based primarily on co-expression rather than on physical, genetic,

or physiological interactions (Figure 4—figure supplement 1). Strikingly, 49 out of these 64 genes

overlapped with the list of 84 rrf-1-regulated genes.

This group of 132 genes, whose transcripts are down-regulated (directly or indirectly) by endoge-

nous siRNAs in glp-1 mutants, are likely to include putative direct targets of the siRNA pathway in

these animals. These direct targets are predicted to have increased levels of siRNA directed towards

them in glp-1 mutants compared to that of the dicer-defective double mutant. To identify

these putative direct endo-siRNA targets, we generated small RNA libraries using a method that

mainly captures secondary endo-siRNAs (Fishman et al., 2018) from glp-1 and dcr-1 glp-1 GSC(-)

mutant animals, synchronized to day 1 of adulthood (Figure 4A). As expected, glp-1 and dcr-1 glp-1

mutants lacked 21u-RNAs, which are specifically expressed in the germ cells (Wang and Reinke,

2008; Supplementary file 5). We identified 138 genes whose endo-siRNA levels were ten-fold

higher in glp-1 compared to dcr-1 glp-1 mutants (Supplementary file 5). This defines a group of

endo-siRNAs whose production in GSC(-) animals relied on the integrity of the helicase domain of

dicer. Among the list of genes targeted by these endo-siRNAs, the mRNA levels of five genes

(ZK380.5, W04B5.1, ZK402.2, ZK402.3, F55C9.3) were decreased in a dcr-1-dependent manner in

glp-1 mutants. Thus, we considered these five genes as potential direct endo-siRNA targets in GSC(-

) animals (Figure 4A, Supplementary file 5).

Identification of endo-siRNA regulated genes that affect lifespan
Next, we set out to identify dcr-1-regulated genes whose silencing is required for the longevity of

GSC(-) animals. Silencing of these genes in dcr-1 glp-1 double mutants, by means other than endo-

siRNA, should restore the extended lifespan and improve proteostasis to the typical levels as in GSC

(-) animals. As the dcr-1(mg375) mutation does not compromise the exogenous RNAi pathway, we

examined the effect of RNAi silencing of a select group of these genes on the lifespan of dcr-1 glp-1

double mutants. Specifically, we focused on the five genes that may be directly targeted by endo-

siRNA (identified by the overlap between their expression levels and the levels of their correspond-

ing endo-siRNAs) (Supplementary file 5). In addition, we examined the requirement of 18 cellular

protein modification-related genes, identified as significantly enriched within the group of 132 endo-

siRNA repressed genes by DAVID enrichment analysis (p-value<0.01) (Supplementary file 6).

We treated dcr-1 glp-1 double mutants with RNAi against each of these genes, and qualitatively

examined the number of live animals in the plates on days 8–11. At these time-points, the survival of

dcr-1 glp-1 double mutants was significantly reduced compared to glp-1 mutants. We found seven

RNAi clones that improved the survival of dcr-1 glp-1 mutants in the screen (Supplementary file 7).

These included ZK402.2, ZK402.3 and W04B5.1, which might be direct endo-siRNA targets, and five

modification-related genes (F26E4.5, F26A1.3, C24D10.1, C03C10.2, M05B5.1), which were proba-

bly indirectly regulated by endo-siRNAs. ZK402.2, and ZK402.3 are homologous 12.4 and 5.4 kDa

proteins of unknown function. W04B5.1 is a pseudogene, whose expression is up-regulated in rrf-3
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Figure 4. Inactivation of ptp-5.1 restores longevity in GSC(-) animals with perturbed endogenous siRNA. (A) Scatter plot depicts comparisons of gene-

by-gene siRNA counts from three paired glp-1 mutant and dcr-1 glp-1 double mutant samples. Gray- all genes. Orange- 132 genes whose levels

increased by more than 1.5 folds in dcr-1 glp-1 double mutants compared to glp-1 single mutants at the transcriptome analysis. Purple- five

overlapping genes between the transcriptome analysis and siRNA seq, which are candidate direct targets of endo-siRNA. Blue- ptp-5.1 (c24d10.1). See

also Figure 4—figure supplement 1 and Supplementary files 4, 5, 6, and 7. (B) qRT-PCR of ptp-5.1 transcript on day 1 of adulthood. Asterisks mark

Student’s t-test values of p value<0.05 of 4 independent experiments. Data are presented as mean ± SEM. The low levels of ptp-5.1 transcript in GSC(-)

animals is consistent with the interpretation that in GSC(+) animals, most of the transcript is expressed in the germline. (C) Representative fluorescent

images of dcr-1 glp-1 transgenic animals expressing an extrachromosomal array of a translational reporter fused to the ptp-5.1 gene, driven by ptp-5.1

upstream sequences. Note that the reporter is only detected in a fraction of the animals. Animals that expressed the reporter displayed a clear

fluorescent signal specifically in two adjacent cells in the mid-intestine (see Figure 4—figure supplement 2B). A similar expression pattern of the

transgene was observed in all genetic backgrounds (see Figure 4—figure supplement 2). Bars represent mean of the percentage of animals

expressing the ptp-5.1::gfp transgene in the intestine. At least 250 animals per strain were scored in four independent experiments. Different colors

represent independent experiments. Cochran-Mantel-Haenszel test P-values are indicated. Asterisks mark p<0.001. Somatic expression of the

transgene was detected in all backgrounds in a fraction of the animals. Inactivation of the endo-siRNA pathway by the dcr-1 mutation increased the

Figure 4 continued on next page
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and eri-1 mutants, in which endo-siRNA production is disrupted (Gent et al., 2010; Pavelec et al.,

2009). The group of modification-related genes included a protein tyrosine phosphatase gene

(c24d10.1), whose expression is up-regulated in rrf-3(pk1426) and eri-1(mg366) mutants

(Asikainen et al., 2007). Given this established connection between the tyrosine phosphatase

c24d10.1 and the endo-siRNAs pathway, we further examined the role of its silencing in the longev-

ity of glp-1 mutants. For simplicity, we named c24d10.1 as ptp-5.1 (protein tyrosine phosphatase

5.1), based on its putative protein tyrosine phosphatase activity.

ptp-5.1 transcript levels are indirectly regulated by endo-siRNAs in GSC
(-) animals
First, we used qRT-PCR to follow the transcript levels of ptp-5.1 in the different genetic back-

grounds. As previously reported (Asikainen et al., 2007), we found that ptp-5.1 transcript levels

increase upon interference with endo-siRNA processing in wild-type animals. In addition, ptp-5.1

transcripts were almost absent in GSC(-) animals compared to wild-type controls (Figure 4B). This is

consistent with previous work indicating that ptp-5.1 may be a sperm-specific gene (Ortiz et al.,

2014). Interestingly, we did detect a low level of the ptp-5.1 transcript in germline-less dcr-1 glp-1

double mutants (Figure 4B inset), implying that the ptp-5.1 transcript is expressed to an extent in

the soma of these animals (and perhaps also in the wild-type animals), and that the low levels of ptp-

5.1 transcript in the soma are regulated in an endo-siRNA dependent manner, at least in GSC(-)

mutants.

To further analyze the somatic expression of ptp-5.1, we generated transgenic animals expressing

an extra-chromosomal translational reporter of the PTP-5.1 protein fused to GFP, driven by the ptp-

5.1 promoter. Interestingly, whereas no detectable expression of the transgene was observed in the

majority of the wild-type transgenic animals, we did detect clear expression of the transgene in 15%

of the animals (Figure 4C, Figure 4—figure supplement 2). In most of these animals, the reporter

was expressed in two adjacent cells in the middle of the intestine (Figure 4—figure supplement 2).

In very few cases, we detected expression of the transgene in the animals’ nerve system, in lieu of

the intestine. Interference with endo-siRNA processing, by the mg375 mutation in the dcr-1 helicase

domain, increased the fraction of animals with the intestinal expression of the reporter. Interestingly,

removal of the germline did not further alter the somatic expression of the reporter (i.e. 15% of the

germline-less animals expressed the transgene in two of their intestinal cells, and twice as many

germline-less animals expressed the transgene upon interference with the endo-siRNA pathway,

Figure 4C). Altogether, these findings support the notion that ptp-5.1 expression in the soma is sup-

pressed in an endo siRNA-dependent manner in wild-type animals and in GSC(-) animals. We assume

that this expression corresponds to the product of a very small fraction of the ptp-5.1 transcripts,

the majority of which are expressed in the germline rather than in the soma (Figure 4B). Neverthe-

less, since we did not detect a change in the amount of ptp-5.1 endo-siRNAs between the glp-1 and

the dcr-1 glp-1 samples (fold change = 1, P-adj = 0.278, Figure 4A), we conclude that the regulation

of ptp-5.1 transcript levels by endo-siRNAs in glp-1 mutants is indirect.

Inactivation of ptp-5.1 restores longevity and improves proteostasis in
GSC(-) animals with perturbed endo-siRNA
Our limited RNAi screen, described above, suggested that more dcr-1 glp-1 double mutants were

alive upon treatment with ptp-5.1 RNAi. Hence, we examined how a deletion mutation in the ptp-

5.1 gene affected the lifespan of dcr-1 glp-1 mutants, in a detailed lifespan experiment. We found

Figure 4 continued

fraction of the animals expressing the reporter in their mid-intestine. (D) ptp-5.1(tm6122) extended the lifespan of dcr-1 glp-1 double mutants. Breslow

(Generalized Wilcoxon) P-values for each mutant vs. the mutant; ptp-5.1(tm6122) double mutant are indicated. See Supplementary file 1 for additional

lifespan data.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. String analysis of 132 genes whose levels increased by more than 1.5 fold in dcr-1 glp-1 double mutants compared to glp-1

mutant.

Figure supplement 2. The ptp-5.1::gfp transgene is expressed in the intestine of a fraction of the animals.
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that a mutation in ptp-5.1 extended the lifespan of dcr-1 glp-1 double mutants to the level of that of

long-lived GSC(-) glp-1 mutants (Figure 4D). In contrast, the ptp-5.1 mutation did not significantly

change the lifespan of wild-type animals, dcr-1 single mutants or glp-1 single mutants (Figure 4D

and Supplementary file 1). Thus, ptp-5.1 seems to specifically limit the lifespan of GSC(-) animals

when the endo-siRNA pathway is compromised.

Since we found that endo-siRNAs were required for HSF-1’s activity in GSC(-) animals, we also

examined the effect of ptp-5.1 inactivation on the compromised heat shock response of GSC(-) dcr-

1 glp-1 double mutants. We found that mutation in ptp-5.1 fully restored the heat shock resistance

of dcr-1 glp-1 double mutants to the same survival level as that of glp-1 single mutants. In contrast,

introduction of a mutation in ptp-5.1 into wild-type or dcr-1 animals did not alter their survival after

heat shock (Figure 5A).

In addition to their sensitivity to heat shock, dcr-1 glp-1 double mutants were less capable of

forming HSF-1 foci within the nuclei in response to heat shock compared to glp-1 animals

(Figure 2C). Hence, we examined the ability of HSF-1 to form intra-nuclear foci upon heat shock in

dcr-1 glp-1 animals in the presence of the ptp-5.1 mutation. We observed a significant increase in

the average number of HSF-1-labeled foci per hypodermal cell in heat-shocked dcr-1 glp-1; ptp-5.1

triple mutants compared to dcr-1 glp-1 double mutants. This increase in the number of foci upon

ptp-5.1 inactivation was unique to dcr-1 glp-1 mutants, as its inactivation did not increase the

Figure 5. Inactivation of ptp-5.1 improves proteostasis in GSC(-) animals with perturbed endogenous siRNA. (A) Thermo-resistance of age-synchronized

animals subjected to heat shock (37˚C, 9 hr) on day 2 of adulthood upon 5 hr of recovery at 25˚C (120 animals per treatment, N = 3). Asterisks mark

Cochran-Mantel-Haenszel test values of p<0.001. (B) Bars represent mean of mean number of HSF-1::GFP nuclear foci per hypodermal cell. At least 140

cells per genotype were scored in a total of 3 independent experiments. Dots represent mean number of HSF-1 foci per cell with different shapes

representing independent experiments. Asterisk marks p-value<0.05 determined by One-Way ANOVA followed by Tukey’s post hoc analysis. Data are

presented as mean ± SEM. See Supplementary file 8 for statistic details. (C) Fluorescence micrographs of representative hypodermal cells in day three

adults, harboring a single copy of the Phsf-1::hsf-1::gfp transgene upon exposure to heat shock. Nuclear boundaries are circled. Exposures and contrast

were adjusted for each picture independently to best emphasize foci amount.
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number of foci in wild-type, dcr-1 mutants or glp-1 mutants (Figure 5B–C). Altogether, these experi-

ments suggest that ptp-5.1 downregulation is sufficient for restoration of the longevity and the

improved heat shock response, which were compromised by the endo-siRNA-deficiency in GSC(-)

animals.

Discussion
Although the idea that the rate of aging can be slowed down and the existence of longevity-promot-

ing genes and pathways are well established, we are still deciphering the underlying mechanism

whereby longevity pathways extend lifespan. At the molecular level, most life-span extension path-

ways involve extensive remodeling of the transcriptome. Accordingly, genes involved in chromatin

modifications (Maures et al., 2011; Greer et al., 2011), RNA modifying pathways (Heintz et al.,

2017; Tabrez et al., 2017; Son et al., 2017; Masse et al., 2008), a long list of transcription factors,

as well as several miRNAs are all required for the longevity of animals (Denzel et al., 2019).

Besides microRNAs, C. elegans produces additional small RNAs as well as long noncoding RNAs,

targeting coding genes, pseudogenes, and transposons. These, too, could potentially alter gene

expression landscape and affect basic biological processes such as lifespan. Although advances in

sequencing technologies have led to the identification of thousands of endo-siRNAs, their biological

impact is not fully understood. In this study, we demonstrate that endo-siRNAs are implicated in lon-

gevity regulation in animals reprogrammed to slow down aging due to the depletion of their

germline.

The processing of endo-siRNAs and the silencing of their target genes are complex. Endo-siRNA

processing in C. elegans requires multiple proteins, including dicer, several RdRPs, and different

Argonaute proteins (Yigit et al., 2006; Duchaine et al., 2006; Fischer et al., 2011). We found that

impairment of primary siRNA production (via dcr-1 and rrf-3 mutations), impairment of secondary

siRNA production and target silencing in the cytoplasm (via ergo-1 mutation), and impairment of tar-

get silencing in the nucleus (via nrde-3 mutation), all compromise longevity associated with germline

depletion. Interestingly, impairment of the endo-siRNA machinery did not consistently affect the life-

span of wild-type animals (Figure 1A–E, Supplementary file 1). This suggests that the silencing by

endo-siRNAs affects target genes that specifically limit longevity, at least in GSC(-) animals, rather

than normal lifespan. Furthermore, given the lack of germline in these animals, this establishes an

important somatic role for endo siRNAs, which have been mostly associated with germline inheri-

tance (Rechavi and Lev, 2017; Rechavi et al., 2014; Kishimoto et al., 2017; Ni et al., 2016).

Depending on the mutated endo siRNA-related gene, different extents of lifespan shortening

were observed in glp-1 mutants. The strongest effect on lifespan was observed with the nrde-3

mutant. This suggests that the silencing event that controls the longevity of GSC(-) animals is medi-

ated via nuclear silencing. We attribute the weaker effects of the other endo-siRNA related muta-

tions to partial inactivation of the endo-siRNA processing, due to possible redundancies (for

example in the case of mutation in the rrf-3 RdRP, which is one of four RdRPs in C. elegans), or due

to mis-regulation of only a subset of endo siRNAs (as in the case of the point mutation in the heli-

case domain of dicer (Welker et al., 2010).

To identify longevity-related endo siRNA regulated genes and pathways in GSC(-) animals, we

undertook a functional genomic approach, monitoring both the abundance of all endo siRNAs as

well as the transcriptomic changes in the same animals. This genomic approach was then comple-

mented by functional studies leading to the identification of direct and indirect endo siRNA-regu-

lated genes, whose endo siRNA-dependent silencing is critical for the longevity of GSC(-) animals.

Among the identified genes were putative direct endo siRNA targets genes as well as the indirect

target ptp-5.1. In addition, the transcriptome analysis pointed out a set of HSF-1 regulated genes,

primarily but not exclusively chaperone genes, whose levels were reduced in dcr-1 glp-1 mutants,

suggesting that the endo siRNA protects the cytosolic heat shock response in glp-1 mutants (Fig-

ure 2—figure supplement 1, Figure 4—figure supplement 1). The impairment in HSF-1 activity in

endo siRNA defective glp-1 mutants could in turn account for the compromised longevity and pro-

teostasis in these animals, as both the longevity and the superior proteostasis of glp-1 mutants are

dependent on HSF-1 (Shemesh et al., 2013; Hansen et al., 2005). These findings suggest that endo

siRNAs are required to remove an activity restraint on the proteostasis-related transcription factor

HSF-1 in glp-1 mutants. Interestingly, the requirement to counteract restraining pathways to
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Figure 6. Endo-siRNAs improve proteostasis and promote longevity of GSC(-) animals by enabling HSF-1

activation. Model: Germline-less animals extensively remodel their transcriptome to promote longevity and

proteostasis. HSF-1 is one of the central transcription factors that transcribe proteostasis and longevity-promoting

genes. We find that endo-siRNAs are critical for HSF-1 activity in GSC(-) animals, and consequently for their

longevity and improved proteostasis. These endo-siRNAs are important because they indirectly limit the level of

the tyrosine phosphatase ptp-5.1. The inhibition of this tyrosine phosphatase is critical for HSF-1 activation in

proteostasis challenging settings such as heat-shock and aging. Whereas the release of HSF-1 from ptp-5.1

inhibition is required for the proteostasis and longevity benefits in GSC(-) animals, it is not sufficient. To achieve

effective remodeling of the proteostasis and longevity promoting networks, germline removal must coordinate

between the removal of ptp-5.1-dependent inhibition of HSF-1 and additional cellular events that promote HSF-1

activity such as reducing the repressive chromatin marks at HSF1-regulated stress-responsive genes.
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promote HSF-1 activity is also observed in animals with reduced insulin/IGF-1 signaling, in which

HSF-1 must dissociate from inhibitory factors, such as DDL-1, to gain activation (Chiang et al.,

2012). These mechanisms are consistent with the multi-step nature of HSF-1 activation (Sarge et al.,

1993).

Of the different endo-siRNA regulated genes identified in this study, we focused on tyrosine

phosphatase ptp-5.1. We found that endo siRNA indirect repression of ptp-5.1 in the soma is critical

for HSF-1 activation in GSC(-) animals. This places ptp-5.1 as an upstream inhibitor of HSF-1 in GSC(-

) animals. Interestingly, expression data analysis indicates that ptp-5.1 is primarily expressed in the

sperm and is normally absent from the soma (Ortiz et al., 2014). Our data confirm that the majority

of the ptp-5.1 transcripts reflect germline expression rather than somatic expression. Nevertheless,

we did detect PTP-5.1 expression in the soma in a subset of the transgenic animals (Figure 4C).

Hence, the removal of this low amount of ptp-5.1 in the soma is critical for the proteostasis mainte-

nance and the longevity of GSC(-) animals.

Inactivation of ptp-5.1 completely restored both longevity and the superior proteostasis of dcr-1

glp-1 mutants to the level of glp-1 mutants, implying that it is a proteostasis and longevity-limiting

factor (Figure 4D and Figure 5). Nevertheless, ptp-5.1 mutants, which do not express ptp-5.1 in the

soma, are not long-lived or heat shock resistant as are GSC(-) animals (Figure 4D and Figure 5). This

suggests that in addition to the removal of the proteostasis/lifespan limiting gene ptp-5.1 from the

soma, additional proteostasis/lifespan promoting events must take place to obtain these benefits.

For example, in GSC(-) animals, jmjd-3.1 relaxes the chromatin and allows more efficient binding of

HSF-1 to the DNA in mature GSC(-) animals (Labbadia and Morimoto, 2015). Thus, a combination

of HSF-1 activating pathways along with the removal of HSF-1 inhibitory pathways is concomitantly

required to activate HSF-1 to promote proteostasis and longevity (see model in Figure 6).

In summary, this study provides insight into the molecular mechanisms that enable enhanced pro-

teostasis and longevity in GSC(-) animals. Specifically, this study identified a set of endo siRNA-regu-

lated longevity-limiting genes, whose expression must be repressed in the context of the longevity

treatment to enable the activation of the heat shock transcription factor HSF-1. This establishes a

role for endo siRNAs in the regulation of proteostasis and aging in long-lived germline-less animals.

We propose that such longevity-limiting genes and pathways may provide new targets for interven-

tions that, along with pro-longevity treatments, may more effectively attenuate or reverse systemic

dysfunction associated with age, and therefore have the potential to reduce overall disease risk for

chronic and proteostasis-related diseases in the elderly.

Materials and correspondence
Correspondence and material requests should be addressed to Sivan Henis-Korenblit.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Strain, strain
background
(C. elegans)

N2 Caenorhabditis
Genetics Center

Wild Type

Strain, strain
background
(C. elegans)

CF1903 Caenorhabditis
Genetics Center

glp-1(e2144) outcrossed three times in
C Kenyon’s lab

Strain, strain
background
(C. elegans)

YY470 Caenorhabditis
Genetics Center

dcr-1(mg375) an outcrossed version of
YY11 dcr-1(m9375)

Strain, strain
background
(C. elegans)

SHK77 This paper dcr-1(mg375)
glp-1(e2144)

Strain created in
S Henis-Korenblit lab

Strain, strain
background
(C. elegans)

CF3152 Cynthia Kenyon lab rrf-3(pk1426) outcrossed three times in
C Kenyon’s lab

Continued on next page

Cohen-Berkman et al. eLife 2020;9:e50896. DOI: https://doi.org/10.7554/eLife.50896 14 of 25

Research article Cell Biology Developmental Biology

https://doi.org/10.7554/eLife.50896


Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Strain, strain
background
(C. elegans)

SHK55 This paper rrf-3(pk1426);
glp-1(e2144)

Strain created in
S Henis-Korenblit lab

Strain, strain
background
(C. elegans)

SHK80 This paper ergo-1(gg98) Strain outcrossed two
times in S Henis-
Korenblit lab.
Total eight outcrosses

Strain, strain
background
(C. elegans)

SHK87 This paper glp-1(e2144);
ergo-1(gg98)

Strain created in
S Henis-Korenblit lab

Strain, strain
background
(C. elegans)

YY158 Caenorhabditis
Genetics Center

nrde-3(gg66)

Strain, strain
background
(C. elegans)

SHK328 This paper glp-1(e2144);
nrde-3(gg66)

Strain created in
S Henis-Korenblit lab

Strain, strain
background
(C. elegans)

SHK53 This paper sid-1(pk3321) Strain outcrossed
four times in
S Henis-Korenblit lab

Strain, strain
background
(C. elegans)

SHK56 This paper glp-1(e2144);
sid-1(pk3321)

Strain created in
S Henis-Korenblit lab

Strain, strain
background
(C. elegans)

OG497 Caenorhabditis
Genetics Center

unc-119(ed3);drSi13
[hsf-1p::hsf-1::GFP::
unc-54utr;Cb-unc-119+]

Strain, strain
background
(C. elegans)

SHK299 This paper unc-119(ed3);drSi13
[hsf-1p::hsf-1::GFP::
unc-54utr;Cb-unc-119+];
glp-1(e2144)

Strain created in
S Henis-Korenblit lab

Strain, strain
background
(C. elegans)

SHK300 This paper unc-119(ed3);drSi13
[hsf-1p::hsf-1::GFP::
unc-54utr;Cb-unc-119+];
dcr-1(mg375)

Strain created in
S Henis-Korenblit lab

Strain, strain
background
(C. elegans)

SHK301 This paper unc-119(ed3);drSi13
[hsf-1p::hsf-1::GFP::
unc-54utr;Cb-unc-119+];
dcr-1(mg375) glp-1(e2144)

Strain created in
S Henis-Korenblit lab

Strain, strain
background
(C. elegans)

AM140 Caenorhabditis
Genetics Center

rmIs132
[unc-54p::Q35::YFP]

Strain, strain
background
(C. elegans)

SHK409 This paper rmIs132 [unc-54p::Q35::YFP];
glp-1(e2144)

Strain created in
S Henis-Korenblit lab

Strain, strain
background
(C. elegans)

SHK412 This paper rmIs132 [unc-54p::Q35::YFP];
dcr-1 (mg375)

Strain created in
S Henis-Korenblit lab

Strain, strain
background
(C. elegans)

SHK410 This paper rmIs132 [unc-54p::Q35::YFP];
dcr-1 (mg375) glp-1(e2144)

Strain created in
S Henis-Korenblit lab

Strain, strain
background
(C. elegans)

HE250 Caenorhabditis
Genetics Center

unc-52(e669su250)

Strain, strain
background
(C. elegans)

SHK574 This paper unc-52(e669su250);
glp-1(e2144)

Strain created in
S Henis-Korenblit lab

Strain, strain
background
(C. elegans)

SHK575 This paper unc-52(e669su250);
dcr-1(mg375)

Strain created in
S Henis-Korenblit lab

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Strain, strain
background
(C. elegans)

SHK576 This paper unc-52(e669su250);
dcr-1(mg375) glp-1(e2144)

Strain created in
S Henis-Korenblit lab

Strain, strain
background
(C. elegans)

SHK415 This paper ptp-5.1(tm6122) Strain outcrossed three
times in S Henis-
Korenblit lab

Strain, strain
background
(C. elegans)

SHK470 This paper glp-1(e2144);
ptp-5.1(tm6122)

Strain created in
S Henis-Korenblit lab

Strain, strain
background
(C. elegans)

SHK469 This paper dcr-1(mg375);
ptp-5.1(tm6122)

Strain created in
S Henis-Korenblit lab

Strain, strain
background
(C. elegans)

SHK471 This paper dcr-1(mg375) glp-1(e2144);
ptp-5.1(tm6122)

Strain created in
S Henis-Korenblit lab

Strain, strain
background
(C. elegans)

SHK405 This paper unc-119(ed3);drSi13[hsf-
1p::hsf-1::GFP::unc-54utr;
Cb-unc-119+];glp-1(e2144);
ptp-5.1(tm6122)

Strain created in
S Henis-Korenblit lab

Strain, strain
background
(C. elegans)

SHK406 This paper unc-119(ed3);drSi13[hsf-
1p::hsf-1::GFP::unc-54utr;
Cb-unc-119+];dcr-1(mg375);
ptp-5.1(tm6122)

Strain created in
S Henis-Korenblit lab

Strain, strain
background
(C. elegans)

SHK407 This paper unc-119(ed3);drSi13[hsf-
1p::hsf-1::GFP::unc-54utr;
Cb-unc-119+];dcr-1(mg375)
glp-1(e2144);ptp-5.1(tm6122)

Strain created in
S Henis-Korenblit lab

Strain, strain
background
(C. elegans)

SHK619 This paper biuEx63[Pptp-5.1::genomic
ptp-5.1::gfp+rol-6]

Strain created in
S Henis-Korenblit lab

Strain, strain
background
(C. elegans)

SHK622 This paper dcr-1(mg375);
biuEx63[Pptp-5.1::genomic
ptp-5.1::gfp+rol-6]

Strain created in
S Henis-Korenblit lab

Strain, strain
background
(C. elegans)

SHK623 This paper glp-1(e2144);
biuEx63[Pptp-5.1::genomic
ptp-5.1::gfp+rol-6]

Strain created in
S Henis-Korenblit lab

Strain, strain
background
(C. elegans)

SHK624 This paper glp-1(e2144);
biuEx63[Pptp-5.1::genomic
ptp-5.1::gfp+rol-6]

Strain created in
S Henis-Korenblit lab

Strain, strain
background
(C. elegans)

SHK620 This paper dcr-1(mg375) glp-1(e2144);
biuEx63[Pptp-5.1::genomic
ptp-5.1::gfp+rol-6]

Strain created in
S Henis-Korenblit lab

Strain, strain
background
(C. elegans)

SHK621 This paper dcr-1(mg375) glp-1(e2144);
biuEx63[Pptp-5.1::genomic
ptp-5.1::gfp+rol-6]

Strain created in
S Henis-Korenblit lab

Sequence-
based reagent

act-1 FW This paper qPCR primers CCAATCCAAGAGA
GGTATCCTTAC

Sequence-
based reagent

act-1 BW This paper qPCR primers CATTGTAGAAGGT
GTGATGCCAG

Sequence-
based reagent

F44E5.5 FW This paper qPCR primers CAGAATGGAAAGGT
TGAGATCCTCGCC

Sequence-
based reagent

F44E5.5 BW This paper qPCR primers ACTGTATTCTCTGGAT
TACGAGCTGCTTGA

Sequence-
based reagent

hsp-16.2 BW This paper qPCR primers CTCTCCATCTGAGTCT
TCTGAGATTGTTAACA

Sequence-
based reagent

hsp-16.2 FW This paper qPCR primers CAATTCTTGTTCTC
CTTGGATTGATAGCGT

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Sequence-
based reagent

hsp-12.6 BW This paper qPCR primers GATGGAGTTGTCA
ATGTCCTCGACGAC

Sequence-
based reagent

hsp-12.6 FW This paper qPCR primers TTGTGCTCCATATGGA
TTTCAAGAAGTTCTCC

Sequence-
based reagent

ptp-5.1 FW This paper qPCR primers AAGGCTCCGTC
TCCTGCACT

Sequence-
based reagent

ptp-5.1 BW This paper qPCR primers TCCAGAGACACTTG
TTGCTATCGGAG

Sequence-
based reagent

bw_kpni_ptp-5.1_cds This paper cloning primers GACAATGGTACCTTTCC
AGGTCCCATCATACT

Sequence-
based reagent

fw_PstI_ptp-5.1_Prom This paper cloning primers ATGCCTGCAGCACC
TACATTACGCCTGCGC

Antibody anti-HSF-1, rabbit
polyclonal Antibody

Abcam ABE1044 WB(1:1,000)

Antibody anti-Tubulin mouse
monoclonal ascites
fluid B-5-1-2

SIGMA-ALDRICH T5168 WB(1:6000)

Antibody anti-Tubulin,
mouse monoclonal

DHSB AA4.3 WB(1:2,000),
RRID:AB_579793

Commercial kit RNA spike-in kit Agilent 5188–5279

Commercial kit miRVana miRNA
isolation kit
(w/phenol)

Ambion AM1560

Commercial
assay

C. elegans
microarray 4 � 23,000

Agilent G2519F-020186

Chemical
compound

TRIzol Ambion 15596026

Chemical
compound

Linoleic acid
sodium salt

Sigma L8134

Chemical
compound

Maxima
SYBR GREEN

Thermo Scientific K0221

Instrument microarray
scanner

Agilent G2565BA

Instrument CFX-96 real
time system

BioRad

Software, algorithm Agilent Feature
Extraction software

Agilent version 9.5.1.1 Agilent Technologies,
RRID:SCR_014963

Software, algorithm Partek Genomics
Suite software

Partek version 6.6 RRID:SCR_011860

Software, algorithm DAVID RRID:SCR_001881

Software, algorithm STRING RRID:SCR_005223

Software, algorithm SPSS SPSS RRID:SCR_002865

Molecular cloning and generation of transgenic animals
The genomic fragment of ptp-5.1, including the coding region and 2 kb upstream sequence, was

amplified from the corresponding cosmid and cloned into the PstII and KpnI sites in the L3691 plas-

mid, in frame with the GFP coding sequence. Germline transformations were performed by injection

of 40 ng/ml plasmid and 60 ng/ml of rol-6(su1006) as a co-transformation marker into wild-type ani-

mals. Transgenic animals were allowed to lay eggs for 4 hrs. Eggs were raised at 25 degrees until

day 1 of adulthood. On day 1 of adulthood, the animals were anesthetized on 2% agarose pads con-

taining 2 mM levamisol. Number of GFP-expressing animals was scored with 100X magnification. At

least 250 animals per strain were scored in four independent experiments. For localization analysis,

DAPI staining was performed using an acetone-based protocol, which preserves the GFP signal, as
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previously described (Liang et al., 2018). Images were taken with a CCD digital camera using a

Nikon 90i fluorescence microscope and merged using ImageJ.

RNA interference
Bacteria expressing dsRNA were cultured overnight in LB containing 10 mg/mL tetracycline and 100

mg/mL ampicillin. Bacteria were seeded on NGM plates containing 2 mM IPTG and 0.05 mg/ml car-

benicillin. RNAi clone identity was verified by sequencing. Eggs were placed on plates and synchro-

nized at day 0 (L4).

Lifespan and paralysis assay
Eggs were placed on standard NGM media with OP50 bacteria. Lifespan was scored every 1–2 days.

Animals were raised at 25 degrees from eggs until day 1, and transferred to 20 degrees henceforth,

except for the DGLA related lifespans. Related lifespans experiments were performed concurrently

to minimize variability. In all experiments, lifespan was scored as of the L4 stage, which was set as

t = 0. Animals that ruptured or crawled off the plates were included in the lifespan analysis as cen-

sored worms. For DGLA-supplemented lifespans, linoleic acid sodium salt (Sigma L8134) was dis-

solved in water and added to 0.1% NP-40-containing plates to a final concentration of 150 mM.

Plates containing the detergent NP-40 (0.1%) were used as control. DGLA related lifespans were

performed at 20 degrees from egg stage. SPSS program was used to determine the means and the

P-values. P-values were calculated using the Breslow (Generalized Wilcoxon) method (Gehan, 1965).

Microarray analysis
Total RNA was extracted with TRIzol reagent (Ambion, 15596026) from wild type, dcr-1(mg375),

glp-1(e2144), and dcr-1(mg375) glp-1(e2144) animals. RNA concentrations were measured using a

NanoDrop spectrophotometer (ND-1000), and sample quality was checked using a bioanalyzer (Agi-

lent). 200 ng of total RNA of each sample, in the presence of control RNAs (RNA spike-in kit, Agi-

lent), was labeled with either Cy-3 or Cy-5 using the low-input quick amp labeling kit, two-color

(Agilent) following the manufacturer’s protocol. Each strain had four biological replicates. Equal

amounts of labeled RNA were hybridized overnight to Agilent’s C. elegans microarray 4 � 23,000 at

60˚C. Hybridization mixes were prepared using the gene expression hybridization kit of Agilent fol-

lowing the manufacturer’s protocol. Following hybridization, the each slide was first washed with

Gene Expression Wash Buffer 1 (Agilent) and then with Gene Expression Wash Buffer 2 (Agilent).

This was followed by an acetonitrile wash. Finally, the slides were placed in stabilization and drying

solution (Agilent). The washed slides were scanned on an Agilent G2565BA microarray scanner. The

data of all the arrays were first subjected to background correction and LOESS within-array normali-

zation using Agilent Feature Extraction software (version 9.5.1.1, Agilent Technologies). The remain-

ing analyses were performed in Partek Genomics Suite software (version 6.6, Partek, Inc). The log

expression ratios were produced during the normalization step. Data from the four biological repli-

cates were used to perform two-way ANOVA analysis. Genes with significantly up- or downregulated

expression (p-value 0.05) were identified, with a cut-off of at least a 1.5-fold change. We then

focused on expressed genes or pathways enriched as indicated by DAVID enrichment analysis pro-

gram [22] and the gene ontology (GO) classification analysis. The DAVID GO fold change is defined

as the ratio between the proportions of the submitted list and the proportion of the background

one. Raw and processed data were deposited under the Gene Expression Omnibus, with accession

number GSE122457.

Quantitative RT-PCR
Animals were raised at 25 degrees until day 1. On day 1 of adulthood, total RNA was extracted with

TRIzol reagent (Ambion, 15596026). RNA extraction, purification, and reverse transcription were car-

ried out using standard protocol. Real-time PCR was done using Maxima SYBR GREEN (Thermo Sci-

entific, K0221) in Step one plus instrument. Purified DNA templates were amplified in a BioRad CFX-

96 real-time system. mRNA levels of act-1 were used for normalization. P-values were calculated

using Student’s T-test.
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Small RNA sequencing and analysis
Animals were raised at 25 degrees until day 1 of adulthood. Low molecular RNA fraction was

extracted using miRVana miRNA isolation kit (Ambion). Library preparation was done using QsRNA-

seq protocol (Fishman et al., 2018). To allow ligation of secondary siRNA to adapter, two out of

three phosphates were enzymatically removed from the 5’-termini, resulting in secondary siRNA

enriched libraries. Sequences were processed as previously described (Fishman et al., 2018). This

included demuxing, trimming, and collapsing the sequences. Only sequences longer than 14nt long

were processed. The sequences were aligned to WS220 annotated genes (www.wormbase.org)

using Bowite aligner (with parameters -v 0 -e 120 -a –strata –best) (Langmead et al., 2009). DEseq

(Anders and Huber, 2010) package in R (http://www.r-project.org, with pooled-CR parameter) was

used to evaluate siRNA expression. Genes with significant changes in DEseq normalized siRNA

counts between glp-1 mutant and dcr-1 glp-1 mutant were considered if there was at least 10 fold

difference with adjusted p-value after Benjamini–Hochberg correction (P-adj) <0.05)

(Supplementary file 5). Raw and processed data were deposited under the Gene Expression Omni-

bus, with accession number GSE128935.

Western blot
100 animals were boiled in protein sample buffer containing 2% SDS. Proteins were separated using

standard PAGE separation, transferred to a nitrocellulose membrane, and detected by western-blot-

ting using the following antibodies: anti-HSF-1 (ABE1004), anti-Tubulin (DHSB, 1:5000).

HSF-1::GFP foci
HSF-1::GFP foci were scored as previously described (Morton and Lamitina, 2013). Specifically,

eggs of animals containing HSF-1::GFP were placed on standard NGM media with OP50 bacteria

and raised at 25 degrees until day 3 of adulthood. On day 3 of adulthood, the animals were moved

to pre-warmed plates and exposed to heat shock (37˚C for 10 min). Animals were anesthetized on

2% agarose pads containing 2 mM levamisol. Number of foci were scored immediately in posterior

hypodermal cells (per experiment - seven nuclei assessed per worm, seven worms per strain) with

630X magnification. Foci scoring was done in the plane that showed the maximal number of foci per

hypodermal cell. Images were taken with a CCD digital camera using a Nikon 90i fluorescence

microscope. For each trial, exposure time was calibrated to minimize the number of saturated pixels

and kept constant through the experiment. Exposures and contrast were adjusted for each picture

independently to best emphasize foci amount. At least 140 cells per genotype were scored in a total

of 3 independent experiments.

Thermo-resistance assay
Age-synchronized animals (n > 40) were grown at 25˚C until day 2 of adulthood. On day 2 of adult-

hood, animals were subjected to 37˚C heat shock for 9 hr and recovered at 25˚C for 5 hr. Animals

that failed to move in response to a gentle touch with a metal pick were scored as dead.

Motility assay
Age-synchronized animals (n > 30) that express Punc-54::Q35::YFP (Q35) were grown at 25˚C until

day 5 of adulthood. On day 5 of adulthood, animals were placed in 96 wells containing M9 buffer.

Each animal was monitored visually over 15 s for trashing. Values are presented as bends per

minute.

Stiff body paralysis assay
Age-synchronized (n > 30) unc-52(ts) mutant animals were grown at 25˚C until day 1 of adulthood.

Animals were then shifted to 15˚C, and paralysis was scored on day 4 of adulthood.

RNAi screen
dcr-1 glp-1 eggs were treated with RNAi against the listed genes until day 1. Viability of the animals

in the plates was qualitatively scored at days 9–11 as improved or not improved. RNAi identity was

verified by sequencing. Genes whose RNAi identity was not supported by sequencing were noted as

no RNAi. Genes whose RNAi interfered with animal development were indicated as lethal.
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Statistical analysis
Error bars represent the standard error of the mean (SEM), unless noted otherwise. For qRT-PCR,

P-values were calculated using the unpaired Student’s t test. For lifespan experiments, P-values were

calculated using the Breslow (Generalized Wilcoxon) method. For thermo-resistance assay and unc-

52(ts) paralysis, P-values were calculated using the Cochran-Mantel-Haenszel test. For Q35 motility

assay and HSF-1 foci formation assay, P-values were calculated using one-way ANOVA followed by

Tukey’s post hoc analysis. For Western Blot analysis, One sample Test and One-way ANOVA fol-

lowed by Tukey’s post hoc analysis were applied. For fraction of animals expressing the ptp-5.1

transgene, P-values were calculated using the Cochran-Mantel-Haenszel test.

Acknowledgements
We thank Dr. Jennifer Israel Cohen Benichou for statistical analysis and data presentation and Ms.

Yael Laure for English editing. We thank members of the Henis-Korenblit laboratory for helpful dis-

cussions. We thank Dr. Shohei Mitani (National Bioresource Project for the nematode, Tokyo Wom-

en’s Medical University School of Medicine, Japan) and the Caenorhabditis Genetics Center for

providing nematode strains. This work was supported by funds from ISF grants no. 1571/15 and

689/19 to S.H.K. and no. 927/18 to ATL, by grant no. 3–12066 from the Israeli Ministry of Science,

Technology and Space to S.H.K, and by the Israeli Centers of Research Excellence (I-CORE) program

(Center No. 1796/12 to ATL).

Additional information

Funding

Funder Grant reference number Author

Israel Science Foundation 689/19 Sivan Henis-Korenblit

Israel Science Foundation 927/18 Ayelet T Lamm

Israel Ministry of Science,
Technology and Sports

3-12066 Sivan Henis-Korenblit

Israeli Centers for Research
Excellence

1796/12 Ayelet T Lamm

The funders had no role in study design, data collection and interpretation, or the

decision to submit the work for publication.

Author contributions

Moran Cohen-Berkman, Conceptualization, Data curation, Formal analysis, Investigation, Methodol-

ogy, Writing - original draft; Reut Dudkevich, Conducted some of the lifespan experiments and

some of the western blot experiments; Shani Ben-Hamo, Conducted some of the lifespan experi-

ments and generated the dcr-1 glp-1 double mutant; Alla Fishman, Supervision, Methodology, Writ-

ing - review and editing, Contributed to the acquisition of the small RNA data; Yehuda Salzberg,

Generated the transgenic animals; Hiba Waldman Ben-Asher, Formal analysis, H.W.B-A analyzed

and interpreted the genomic data; Ayelet T Lamm, Formal analysis, Supervision, Investigation, Meth-

odology, Writing - review and editing, A.T.L. analyzed and interpreted the small RNA data; Sivan

Henis-Korenblit, Conceptualization, Formal analysis, Supervision, Funding acquisition, Investigation,

Methodology, Writing - original draft, Project administration, Writing - review and editing

Author ORCIDs

Sivan Henis-Korenblit https://orcid.org/0000-0001-8023-6336

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.50896.sa1

Author response https://doi.org/10.7554/eLife.50896.sa2

Cohen-Berkman et al. eLife 2020;9:e50896. DOI: https://doi.org/10.7554/eLife.50896 20 of 25

Research article Cell Biology Developmental Biology

https://orcid.org/0000-0001-8023-6336
https://doi.org/10.7554/eLife.50896.sa1
https://doi.org/10.7554/eLife.50896.sa2
https://doi.org/10.7554/eLife.50896


Additional files
Supplementary files
. Supplementary file 1. Lifespan analysis of mutants with defective processing of endo-siRNA and

inactivation of ptp-5.1.

. Supplementary file 2. 72 genes whose levels decreased by more than 1.5 fold in dcr-1 glp-1 double

mutants compared to glp-1 single mutants (p-value<0.05).

. Supplementary file 3. GO analysis of 72 genes whose levels decreased by more than 1.5 fold in

dcr-1 glp-1 double mutants compared to glp-1 mutants (p-value<0.05).

. Supplementary file 4. 132 genes whose levels increased by more than 1.5 fold in dcr-1 glp-1 dou-

ble mutants compared to glp-1 single mutants (p-value<0.05).

. Supplementary file 5. Expression of secondary siRNAs of dcr-1 glp-1 vs. glp-1 mutants

(Padj <0.05).

. Supplementary file 6. DAVID analysis of 132 genes whose levels increased by more than 1.5 fold in

dcr-1 glp-1 double mutants compared to glp-1 mutants (p-value<0.05).

. Supplementary file 7. RNAi lifespan screen of dcr-1 glp-1 double mutant.

. Supplementary file 8. Statistical data.

. Transparent reporting form

Data availability

Raw and processed high-throughput sequencing data and microarray data generated and/or ana-

lyzed during this study were deposited under the Gene Expression Omnibus, with accession number

GSE122457 and GSE128935. All other data generated or analysed during this study are included in

the manuscript and supporting files.

The following datasets were generated:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Cohen BM, Ben-
Hemo S, Fishman
A, Waldman B-AH,
Lamm AT, Henis-
Korenblit S

2018 endo-siRNA induced inactivation of
a neddylation suppresor promotes
longevity and HSF-1 activation in
germline-less animals

https://www.ncbi.nlm.
nih.gov/geo/query/acc.
cgi?acc=GSE122457

NCBI Gene
Expression Omnibus,
GSE122457

Berkman MC,
Hemo SB, Fishman
A, Waldman B-AH,
Lamm AT, Henis-
Korenblit S

2019 Endogenous siRNAs promote
proteostasis and longevity in
germline-less Caenorhabditis
elegans

https://www.ncbi.nlm.
nih.gov/geo/query/acc.
cgi?acc=GSE128935

NCBI Gene
Expression Omnibus,
GSE128935

References
Aalto AP, Nicastro IA, Broughton JP, Chipman LB, Schreiner WP, Chen JS, Pasquinelli AE. 2018. Opposing roles
of microRNA argonautes during Caenorhabditis elegans aging. PLOS Genetics 14:e1007379. DOI: https://doi.
org/10.1371/journal.pgen.1007379, PMID: 29927939

Akerfelt M, Morimoto RI, Sistonen L. 2010. Heat shock factors: integrators of cell stress, development and
lifespan. Nature Reviews Molecular Cell Biology 11:545–555. DOI: https://doi.org/10.1038/nrm2938,
PMID: 20628411

Alper S, McElwee MK, Apfeld J, Lackford B, Freedman JH, Schwartz DA. 2010. The Caenorhabditis elegans
germ line regulates distinct signaling pathways to control lifespan and innate immunity. Journal of Biological
Chemistry 285:1822–1828. DOI: https://doi.org/10.1074/jbc.M109.057323, PMID: 19923212

Anders S, Huber W. 2010. Differential expression analysis for sequence count data. Genome Biology 11:R106.
DOI: https://doi.org/10.1186/gb-2010-11-10-r106, PMID: 20979621

Antebi A. 2013. Regulation of longevity by the reproductive system. Experimental Gerontology 48:596–602.
DOI: https://doi.org/10.1016/j.exger.2012.09.009, PMID: 23063987

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT,
Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM,
Sherlock G. 2000. Gene ontology: tool for the unification of biology. the gene ontology consortium. Nature
Genetics 25:25–29. DOI: https://doi.org/10.1038/75556, PMID: 10802651

Cohen-Berkman et al. eLife 2020;9:e50896. DOI: https://doi.org/10.7554/eLife.50896 21 of 25

Research article Cell Biology Developmental Biology

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE122457
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE122457
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE122457
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE128935
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE128935
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE128935
https://doi.org/10.1371/journal.pgen.1007379
https://doi.org/10.1371/journal.pgen.1007379
http://www.ncbi.nlm.nih.gov/pubmed/29927939
https://doi.org/10.1038/nrm2938
http://www.ncbi.nlm.nih.gov/pubmed/20628411
https://doi.org/10.1074/jbc.M109.057323
http://www.ncbi.nlm.nih.gov/pubmed/19923212
https://doi.org/10.1186/gb-2010-11-10-r106
http://www.ncbi.nlm.nih.gov/pubmed/20979621
https://doi.org/10.1016/j.exger.2012.09.009
http://www.ncbi.nlm.nih.gov/pubmed/23063987
https://doi.org/10.1038/75556
http://www.ncbi.nlm.nih.gov/pubmed/10802651
https://doi.org/10.7554/eLife.50896


Asikainen S, Storvik M, Lakso M, Wong G. 2007. Whole genome microarray analysis of C. elegans rrf-3 and eri-1
mutants. FEBS Letters 581:5050–5054. DOI: https://doi.org/10.1016/j.febslet.2007.09.043, PMID: 17919598

Baird NA, Douglas PM, Simic MS, Grant AR, Moresco JJ, Wolff SC, Yates JR, Manning G, Dillin A. 2014. HSF-1-
mediated cytoskeletal integrity determines thermotolerance and life span. Science 346:360–363. DOI: https://
doi.org/10.1126/science.1253168, PMID: 25324391

Ben-Zvi A, Miller EA, Morimoto RI. 2009. Collapse of proteostasis represents an early molecular event in
Caenorhabditis elegans aging. PNAS 106:14914–14919. DOI: https://doi.org/10.1073/pnas.0902882106,
PMID: 19706382

Blumenfeld AL, Jose AM. 2016. Reproducible features of small RNAs in C. elegans reveal NU RNAs and provide
insights into 22G RNAs and 26G RNAs. RNA 22:184–192. DOI: https://doi.org/10.1261/rna.054551.115,
PMID: 26647462

Boehm M, Slack F. 2005. A developmental timing microRNA and its target regulate life span in C. elegans.
Science 310:1954–1957. DOI: https://doi.org/10.1126/science.1115596, PMID: 16373574

Boulias K, Horvitz HR. 2012. The C. elegans microRNA mir-71 acts in neurons to promote germline-mediated
longevity through regulation of DAF-16/FOXO. Cell Metabolism 15:439–450. DOI: https://doi.org/10.1016/j.
cmet.2012.02.014, PMID: 22482727

Brunquell J, Morris S, Lu Y, Cheng F, Westerheide SD. 2016. The genome-wide role of HSF-1 in the regulation of
gene expression in Caenorhabditis elegans. BMC Genomics 17:559. DOI: https://doi.org/10.1186/s12864-016-
2837-5, PMID: 27496166

Burton NO, Burkhart KB, Kennedy S. 2011. Nuclear RNAi maintains heritable gene silencing in Caenorhabditis
elegans. PNAS 108:19683–19688. DOI: https://doi.org/10.1073/pnas.1113310108, PMID: 22106253

Chiang WC, Ching TT, Lee HC, Mousigian C, Hsu AL. 2012. HSF-1 regulators DDL-1/2 link insulin-like signaling to
heat-shock responses and modulation of longevity. Cell 148:322–334. DOI: https://doi.org/10.1016/j.cell.2011.
12.019, PMID: 22265419

de Lencastre A, Pincus Z, Zhou K, Kato M, Lee SS, Slack FJ. 2010. MicroRNAs both promote and antagonize
longevity in C. elegans. Current Biology 20:2159–2168. DOI: https://doi.org/10.1016/j.cub.2010.11.015,
PMID: 21129974

Denzel MS, Lapierre LR, Mack HID. 2019. Emerging topics in C. elegans aging research: transcriptional
regulation, stress response and epigenetics. Mechanisms of Ageing and Development 177:4–21. DOI: https://
doi.org/10.1016/j.mad.2018.08.001, PMID: 30134144

Duchaine TF, Wohlschlegel JA, Kennedy S, Bei Y, Conte D, Pang K, Brownell DR, Harding S, Mitani S, Ruvkun G,
Yates JR, Mello CC. 2006. Functional proteomics reveals the biochemical niche of C. elegans DCR-1 in multiple
small-RNA-mediated pathways. Cell 124:343–354. DOI: https://doi.org/10.1016/j.cell.2005.11.036, PMID: 1643
9208

Fischer SE. 2010. Small RNA-mediated gene silencing pathways in C. elegans. The International Journal of
Biochemistry & Cell Biology 42:1306–1315. DOI: https://doi.org/10.1016/j.biocel.2010.03.006, PMID: 20227516

Fischer SE, Montgomery TA, Zhang C, Fahlgren N, Breen PC, Hwang A, Sullivan CM, Carrington JC, Ruvkun G.
2011. The ERI-6/7 helicase acts at the first stage of an siRNA amplification pathway that targets recent gene
duplications. PLOS Genetics 7:e1002369. DOI: https://doi.org/10.1371/journal.pgen.1002369, PMID: 22102828

Fishman A, Light D, Lamm AT. 2018. QsRNA-seq: a method for high-throughput profiling and quantifying small
RNAs. Genome Biology 19:113. DOI: https://doi.org/10.1186/s13059-018-1495-0, PMID: 30107842

Flatt T, Schmidt PS. 2009. Integrating evolutionary and molecular genetics of aging. Biochimica Et Biophysica
Acta (BBA) - General Subjects 1790:951–962. DOI: https://doi.org/10.1016/j.bbagen.2009.07.010

Gehan EA. 1965. A generalized two-sample Wilcoxon test for doubly censored data. Biometrika 52:650–653.
DOI: https://doi.org/10.1093/biomet/52.3-4.650

Gent JI, Lamm AT, Pavelec DM, Maniar JM, Parameswaran P, Tao L, Kennedy S, Fire AZ. 2010. Distinct phases of
siRNA synthesis in an endogenous RNAi pathway in C. elegans soma. Molecular Cell 37:679–689. DOI: https://
doi.org/10.1016/j.molcel.2010.01.012, PMID: 20116306

Greer EL, Maures TJ, Ucar D, Hauswirth AG, Mancini E, Lim JP, Benayoun BA, Shi Y, Brunet A. 2011.
Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature 479:365–371.
DOI: https://doi.org/10.1038/nature10572

Grishok A. 2013. Biology and mechanisms of short RNAs in Caenorhabditis elegans. Advances in Genetics 83:1–
69. DOI: https://doi.org/10.1016/B978-0-12-407675-4.00001-8, PMID: 23890211

Gu W, Shirayama M, Conte D, Vasale J, Batista PJ, Claycomb JM, Moresco JJ, Youngman EM, Keys J, Stoltz MJ,
Chen CC, Chaves DA, Duan S, Kasschau KD, Fahlgren N, Yates JR, Mitani S, Carrington JC, Mello CC. 2009.
Distinct argonaute-mediated 22G-RNA pathways direct genome surveillance in the C. elegans germline.
Molecular Cell 36:231–244. DOI: https://doi.org/10.1016/j.molcel.2009.09.020, PMID: 19800275

Guang S, Bochner AF, Pavelec DM, Burkhart KB, Harding S, Lachowiec J, Kennedy S. 2008. An argonaute
transports siRNAs from the cytoplasm to the nucleus. Science 321:537–541. DOI: https://doi.org/10.1126/
science.1157647, PMID: 18653886

Hansen M, Hsu A-L, Dillin A, Kenyon C. 2005. New genes tied to endocrine, metabolic, and dietary regulation of
lifespan from a Caenorhabditis elegans genomic RNAi screen. PLOS Genetics 1:e17. DOI: https://doi.org/10.
1371/journal.pgen.0010017

Heintz C, Doktor TK, Lanjuin A, Escoubas C, Zhang Y, Weir HJ, Dutta S, Silva-Garcı́a CG, Bruun GH, Morantte I,
Hoxhaj G, Manning BD, Andresen BS, Mair WB. 2017. Splicing factor 1 modulates dietary restriction and
TORC1 pathway longevity in C. elegans. Nature 541:102–106. DOI: https://doi.org/10.1038/nature20789,
PMID: 27919065

Cohen-Berkman et al. eLife 2020;9:e50896. DOI: https://doi.org/10.7554/eLife.50896 22 of 25

Research article Cell Biology Developmental Biology

https://doi.org/10.1016/j.febslet.2007.09.043
http://www.ncbi.nlm.nih.gov/pubmed/17919598
https://doi.org/10.1126/science.1253168
https://doi.org/10.1126/science.1253168
http://www.ncbi.nlm.nih.gov/pubmed/25324391
https://doi.org/10.1073/pnas.0902882106
http://www.ncbi.nlm.nih.gov/pubmed/19706382
https://doi.org/10.1261/rna.054551.115
http://www.ncbi.nlm.nih.gov/pubmed/26647462
https://doi.org/10.1126/science.1115596
http://www.ncbi.nlm.nih.gov/pubmed/16373574
https://doi.org/10.1016/j.cmet.2012.02.014
https://doi.org/10.1016/j.cmet.2012.02.014
http://www.ncbi.nlm.nih.gov/pubmed/22482727
https://doi.org/10.1186/s12864-016-2837-5
https://doi.org/10.1186/s12864-016-2837-5
http://www.ncbi.nlm.nih.gov/pubmed/27496166
https://doi.org/10.1073/pnas.1113310108
http://www.ncbi.nlm.nih.gov/pubmed/22106253
https://doi.org/10.1016/j.cell.2011.12.019
https://doi.org/10.1016/j.cell.2011.12.019
http://www.ncbi.nlm.nih.gov/pubmed/22265419
https://doi.org/10.1016/j.cub.2010.11.015
http://www.ncbi.nlm.nih.gov/pubmed/21129974
https://doi.org/10.1016/j.mad.2018.08.001
https://doi.org/10.1016/j.mad.2018.08.001
http://www.ncbi.nlm.nih.gov/pubmed/30134144
https://doi.org/10.1016/j.cell.2005.11.036
http://www.ncbi.nlm.nih.gov/pubmed/16439208
http://www.ncbi.nlm.nih.gov/pubmed/16439208
https://doi.org/10.1016/j.biocel.2010.03.006
http://www.ncbi.nlm.nih.gov/pubmed/20227516
https://doi.org/10.1371/journal.pgen.1002369
http://www.ncbi.nlm.nih.gov/pubmed/22102828
https://doi.org/10.1186/s13059-018-1495-0
http://www.ncbi.nlm.nih.gov/pubmed/30107842
https://doi.org/10.1016/j.bbagen.2009.07.010
https://doi.org/10.1093/biomet/52.3-4.650
https://doi.org/10.1016/j.molcel.2010.01.012
https://doi.org/10.1016/j.molcel.2010.01.012
http://www.ncbi.nlm.nih.gov/pubmed/20116306
https://doi.org/10.1038/nature10572
https://doi.org/10.1016/B978-0-12-407675-4.00001-8
http://www.ncbi.nlm.nih.gov/pubmed/23890211
https://doi.org/10.1016/j.molcel.2009.09.020
http://www.ncbi.nlm.nih.gov/pubmed/19800275
https://doi.org/10.1126/science.1157647
https://doi.org/10.1126/science.1157647
http://www.ncbi.nlm.nih.gov/pubmed/18653886
https://doi.org/10.1371/journal.pgen.0010017
https://doi.org/10.1371/journal.pgen.0010017
https://doi.org/10.1038/nature20789
http://www.ncbi.nlm.nih.gov/pubmed/27919065
https://doi.org/10.7554/eLife.50896


Henis-Korenblit S, Zhang P, Hansen M, McCormick M, Lee SJ, Cary M, Kenyon C. 2010. Insulin/IGF-1 signaling
mutants reprogram ER stress response regulators to promote longevity. PNAS 107:9730–9735. DOI: https://
doi.org/10.1073/pnas.1002575107, PMID: 20460307

Hsin H, Kenyon C. 1999. Signals from the reproductive system regulate the lifespan of C. elegans. Nature. 399:
362–366. DOI: https://doi.org/10.1038/20694

Hsu AL, Murphy CT, Kenyon C. 2003. Regulation of aging and age-related disease by DAF-16 and heat-shock
factor. Science 300:1142–1145. DOI: https://doi.org/10.1126/science.1083701, PMID: 12750521
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