41 research outputs found

    Lateral termination of the north-directed Alpine orogeny and onset of westward escape in the Western Alpine arc: Structural and sedimentary evidence from the external zone

    Get PDF
    31p.International audienceThe initial propagation of the Western Alpine orogen was directed northwestward, as shown by basement-involved and Mesozoic sedimentary cover compressional structures and by the early foreland basins evolution. The crystalline basement of the Dauphine zone recorded three shortening episodes: pre-Priabonian deformation D1 (coeval with the Pyrenean-Provence orogeny), and Alpine shortening events D2 (N-NW directed) and D3 (W-directed). The early Oligocene D2 structures are trending sub-perpendicular to the more recent, arcuate orogen and are interfering with (or truncated by) D3, which marks the onset of westward lateral extrusion. The NW-ward propagating Alpine flexural basin shows earliest Oligocene thin-skinned compressional deformation, with syn-depositional basin-floor tilting and submarine removal of the basin infill above active structures. Gravity enhanced submarine erosion gave birth locally to steep submarine slopes overlain by kilometric-scale blocks slid from the orogenic wedge. The deformations of the basin floor and the associated sedimentary and erosional features indicate a N-NW-ward directed propagation, consistent with D2 in the Dauphine foreland. The Internal zones represent the paleo-accretionary prism developed during this early Alpine continental subduction stage. The early buildup has been curved in the arc and rapidly exhumed during the Oligocene collision stage. Westward extrusion and indenting by the Apulian lithosphere allowed the modern arc to crosscut the western, lateral termination of the ancient orogen from similar to 32 Ma onward. This contrasted evolution leads to propose a palinspastic restoration taking in account important northward transport of the distal passive margin fragments (Brianconnais) involved in the accretionary prism before the formation of the Western Alps arc

    Development of LGAD sensors with a thin entrance window for soft X-ray detection

    Full text link
    We show the developments carried out to improve the silicon sensor technology for the detection of soft X-rays with hybrid X-ray detectors. An optimization of the entrance window technology is required to improve the quantum efficiency. The LGAD technology can be used to amplify the signal generated by the X-rays and to increase the signal-to-noise ratio, making single photon resolution in the soft X-ray energy range possible. In this paper, we report first results obtained from an LGAD sensor production with an optimized thin entrance window. Single photon detection of soft X-rays down to 452~eV has been demonstrated from measurements, with a signal-to-noise ratio better than 20.Comment: 10 pages, 6 figure

    Characterization of iLGADs using soft X-rays

    Full text link
    Experiments at synchrotron radiation sources and X-ray Free-Electron Lasers in the soft X-ray energy range (250250eV--22keV) stand to benefit from the adaptation of the hybrid silicon detector technology for low energy photons. Inverse Low Gain Avalanche Diode (iLGAD) sensors provide an internal gain, enhancing the signal-to-noise ratio and allowing single photon detection below 11keV using hybrid detectors. In addition, an optimization of the entrance window of these sensors enhances their quantum efficiency (QE). In this work, the QE and the gain of a batch of different iLGAD diodes with optimized entrance windows were characterized using soft X-rays at the Surface/Interface:Microscopy beamline of the Swiss Light Source synchrotron. Above 250250eV, the QE is larger than 55%55\% for all sensor variations, while the charge collection efficiency is close to 100%100\%. The average gain depends on the gain layer design of the iLGADs and increases with photon energy. A fitting procedure is introduced to extract the multiplication factor as a function of the absorption depth of X-ray photons inside the sensors. In particular, the multiplication factors for electron- and hole-triggered avalanches are estimated, corresponding to photon absorption beyond or before the gain layer, respectively.Comment: 16 pages, 8 figure

    La transition raccourcissement-extension Oligocène dans l'édifice de nappes de l'Arc Calabro-Péloritain (Italie méridionale). Nouvelles données structurales, métamorphiques et géochronologiques sur le Massif de l'Aspromonte.

    Get PDF
    The geodynamic evolution of the Mediterranean area is characterized by the superimposition of convergence and extensional tectonic phases marked by the opening of sedimentary and oceanic basins onto a former thickened crust. The Calabro-Peloritan Arc (CPA) located astride the southern end of continental Italy and the northeastern Sicily corresponds to a segment of the former south-European active margin. This area, together with the Kabylian and Betico-Rifan massifs, was involved successively in shortening tectonics, associated to the subduction of the Tethyan oceanic lithosphere, and in extensional tectonics during the opening of the western Mediterranean basins. The CPA is a nappes-pile made of Alpine oceanic-derived units tectonically overlain by Hercynian metamorphics. This tectonic edifice was then transported onto the Apennine chain during the opening of the Tyrrhenian basin. The study presented here focused on the Aspromonte Massif which corresponds to the southern part of the CPA. The main purposes were to precise the geometry and the tectonometamorphic evolution of the units forming the uppermost part of the nappes-pile in order to better understand the conditions of the shortening to extension transition and the Oligocene Mediterranean kinematics. A multidisciplinary approach was used implying structural geology, microstructural and petrographic analysis of sampled rocks, thermobarometric estimates of the successive metamorphic phases and their dating by 40Ar/39Ar geochronology. Except for the evidences of a rather poorly constrained Hercynian evolution, the main results obtained show, a two steps Alpine evolution. The first step corresponds to a stacking phase; the second one corresponds to an extensional reworking of the entire nappes-pile. Metamorphic and geochronological data suggest that the piling was initiated in the middle of Eocene (~45 Ma) or earlier, while extension started probably in the lower Oligocene (since 33 Ma) and lasted until the middle Oligocene (27 Ma) without change in orientation. This second deformation phase leads to the progressive exhumation of the deepest units, partly controlled by a strong tectonic denudation. The kinematic directions of this reconstituted structural evolution, replaced in their initial position and orientation, before the CPA formation, imply a shortening direction in agreement with the bulk convergence direction between African and European plates at Eocene times. In the contrary, the age of the extensional phase indicates that the western Mediterranean tectonic thinning started probably at least in Lower Oligocene. In addition, its location and orientation suggest that it could be related to the opening of the North-Algerian basin, previously to the opening of the Liguro-Provencal basin and the associated SE-directed Tethyan slab retreat.L'évolution géodynamique des régions méditerranéennes est caractérisée par la succession de phases de convergence et de phases d'extension qui se marquent par l'ouverture de bassins sédimentaires et océaniques au niveau de zones initialement épaissies. L'Arc Calabro-Péloritain (ACP) situé à cheval sur la pointe sud de l'Italie continentale et sur la pointe nord-est de la Sicile, correspond à un fragment de l'ancienne marge active sud-européenne. Cette région à laquelle appartenaient également les massifs Kabyles, le Rif et les Cordillères Bétiques, a été impliquée successivement dans des épisodes de tectonique en raccourcissement, associés à la subduction de la lithosphère océanique téthysienne, et dans des épisodes de tectonique en extension pendant l'ouverture des bassins de la Méditerranée Occidentale. L'ACP est constitué d'une pile de nappes tectoniques impliquant des unités ophiolitifères alpines et des unités cristallophyliennes hercyniennes. Cet ensemble a été charrié sur la marge sédimentaire apulienne, et a été intégré dans l'édifice tectonique de la chaîne apenninique au cours de l'ouverture récente du bassin Tyrrhénien. Les travaux menés au cours de cette thèse se sont focalisés sur la partie sud de l'ACP, dans la région du Massif de l'Aspromonte. Ils visaient à préciser la géométrie et l'évolution tectonométamorphique des unités qui constituent la partie supérieure de l'édifice de nappes, afin de mieux comprendre les modalités de la transition convergence - extension, et la cinématique de l'évolution du domaine méditerranéen à l'Oligocène. Cette étude s'est appuyée sur une approche pluridisciplinaire impliquant la géologie structurale, l'étude pétrographique et microstructurale des roches échantillonnées, les estimations thermobarométriques des conditions des épisodes métamorphiques successifs et leur datation par la méthode 40Ar /39Ar.Les principaux résultats obtenus mettent en évidence, hormis les indices d'une évolution hercynienne assez mal contrainte, une évolution alpine impliquant deux étapes successives. La première correspond à l'empilement des unités tectoniques, la seconde à la reprise en extension de l'édifice de nappes. Les contraintes métamorphiques et géochronologiques suggèrent que l'empilement était déjà initié à l'Eocène moyen (~ 45 Ma), tandis que l'extension a probablement débuté à l'Oligocène inférieur (à partir de 33 Ma) et s'est prolongée au moins jusqu'à l'Oligocène moyen (27 Ma) avec les mêmes caractéristiques cinématiques. Cette seconde déformation entraîne l'exhumation des unités profondes, contrôlée en partie par une importante dénudation tectonique. Les directions cinématiques de cette évolution structurale replacées dans leur position et leur orientation initiales, avant la formation de l'ACP, impliquent une direction de raccourcissement en accord avec la direction de convergence Afrique-Eurasie reconstituée pour l'Eocène. En revanche l'âge de la phase d'extension indique que l'amincissement tectonique généralisé en Méditerranée Occidentale s'est initié au moins dès l'Oligocène inférieur. En outre la localisation et l'orientation de cette extension suggèrent qu'elle peut-être reliée à l'ouverture du Bassin Nord-Algérien, antérieurement à l'ouverture du Bassin Liguro-Provençal et au retrait de la zone de subduction vers le SE

    La transition raccourcissement-extension Oligocène dans l édifice de nappes de l Arc Calabro-Péloritain (Italie méridionale). Nouvelles données structurales, métamorphiques et géochronologiques sur le Massif de l Aspromonte.

    No full text
    L évolution géodynamique des régions méditerranéennes est caractérisée par la succession de phases de convergence et de phases d extension qui se marquent par l ouverture de bassins sédimentaires et océaniques au niveau de zones initialement épaissies. L Arc Calabro-Péloritain (ACP) situé à cheval sur la pointe sud de l Italie continentale et sur la pointe nord-est de la Sicile, correspond à un fragment de l ancienne marge active sud-européenne. Cette région à laquelle appartenaient également les massifs Kabyles, le Rif et les Cordillères Bétiques, a été impliquée successivement dans des épisodes de tectonique en raccourcissement, associés à la subduction de la lithosphère océanique téthysienne, et dans des épisodes de tectonique en extension pendant l ouverture des bassins de la Méditerranée Occidentale. L ACP est constitué d une pile de nappes tectoniques impliquant des unités ophiolitifères alpines et des unités cristallophyliennes hercyniennes. Cet ensemble a été charrié sur la marge sédimentaire apulienne, et a été intégré dans l édifice tectonique de la chaîne apenninique au cours de l ouverture récente du bassin Tyrrhénien. Les travaux menés au cours de cette thèse se sont focalisés sur la partie sud de l ACP, dans la région du Massif de l Aspromonte. Ils visaient à préciser la géométrie et l évolution tectonométamorphique des unités qui constituent la partie supérieure de l édifice de nappes, afin de mieux comprendre les modalités de la transition convergence - extension, et la cinématique de l évolution du domaine méditerranéen à l Oligocène. Cette étude s est appuyée sur une approche pluridisciplinaire impliquant la géologie structurale, l étude pétrographique et microstructurale des roches échantillonnées, les estimations thermobarométriques des conditions des épisodes métamorphiques successifs et leur datation par la méthode 40Ar /39Ar.Les principaux résultats obtenus mettent en évidence, hormis les indices d une évolution hercynienne assez mal contrainte, une évolution alpine impliquant deux étapes successives. La première correspond à l empilement des unités tectoniques, la seconde à la reprise en extension de l édifice de nappes. Les contraintes métamorphiques et géochronologiques suggèrent que l empilement était déjà initié à l Eocène moyen (~ 45 Ma), tandis que l extension a probablement débuté à l Oligocène inférieur (à partir de 33 Ma) et s est prolongée au moins jusqu à l Oligocène moyen (27 Ma) avec les mêmes caractéristiques cinématiques. Cette seconde déformation entraîne l exhumation des unités profondes, contrôlée en partie par une importante dénudation tectonique. Les directions cinématiques de cette évolution structurale replacées dans leur position et leur orientation initiales, avant la formation de l ACP, impliquent une direction de raccourcissement en accord avec la direction de convergence Afrique-Eurasie reconstituée pour l Eocène. En revanche l âge de la phase d extension indique que l amincissement tectonique généralisé en Méditerranée Occidentale s est initié au moins dès l Oligocène inférieur. En outre la localisation et l orientation de cette extension suggèrent qu elle peut-être reliée à l ouverture du Bassin Nord-Algérien, antérieurement à l ouverture du Bassin Liguro-Provençal et au retrait de la zone de subduction vers le SE.The geodynamic evolution of the Mediterranean area is characterized by the superimposition of convergence and extensional tectonic phases marked by the opening of sedimentary and oceanic basins onto a former thickened crust. The Calabro-Peloritan Arc (CPA) located astride the southern end of continental Italy and the northeastern Sicily corresponds to a segment of the former south-European active margin. This area, together with the Kabylian and Betico-Rifan massifs, was involved successively in shortening tectonics, associated to the subduction of the Tethyan oceanic lithosphere, and in extensional tectonics during the opening of the western Mediterranean basins. The CPA is a nappes-pile made of Alpine oceanic-derived units tectonically overlain by Hercynian metamorphics. This tectonic edifice was then transported onto the Apennine chain during the opening of the Tyrrhenian basin. The study presented here focused on the Aspromonte Massif which corresponds to the southern part of the CPA. The main purposes were to precise the geometry and the tectonometamorphic evolution of the units forming the uppermost part of the nappes-pile in order to better understand the conditions of the shortening to extension transition and the Oligocene Mediterranean kinematics. A multidisciplinary approach was used implying structural geology, microstructural and petrographic analysis of sampled rocks, thermobarometric estimates of the successive metamorphic phases and their dating by 40Ar/39Ar geochronology. Except for the evidences of a rather poorly constrained Hercynian evolution, the main results obtained show, a two steps Alpine evolution. The first step corresponds to a stacking phase; the second one corresponds to an extensional reworking of the entire nappes-pile. Metamorphic and geochronological data suggest that the piling was initiated in the middle of Eocene (~45 Ma) or earlier, while extension started probably in the lower Oligocene (since 33 Ma) and lasted until the middle Oligocene (27 Ma) without change in orientation. This second deformation phase leads to the progressive exhumation of the deepest units, partly controlled by a strong tectonic denudation. The kinematic directions of this reconstituted structural evolution, replaced in their initial position and orientation, before the CPA formation, imply a shortening direction in agreement with the bulk convergence direction between African and European plates at Eocene times. In the contrary, the age of the extensional phase indicates that the western Mediterranean tectonic thinning started probably at least in Lower Oligocene. In addition, its location and orientation suggest that it could be related to the opening of the North-Algerian basin, previously to the opening of the Liguro-Provencal basin and the associated SE-directed Tethyan slab retreat.GRENOBLE1-BU Sciences (384212103) / SudocSudocFranceF

    Middle Oligocene extension in the Mediterranean Calabro-Peloritan belt (Southern Italy). Insights from the Aspromonte nappes-pile.

    Get PDF
    International audienceThe Calabro-Peloritan belt constitutes the eastward termination of the southern segment of the Alpine Mediterranean belt. This orogenic system was built up during the convergence between the Eurasian and the African plates, roughly directed North-South since the Upper Cretaceous. It was subsequently fragmented during the opening of the Western Mediterranean basins since Oligocene times. The curved shape of the Calabro-Peloritan belt was acquired during the opening of the Tyrrhenian basin since Tortonian. The origin, kinematics and significance of the Calabro-Peloritan tectonic pile are still debated. Our data in the Aspromonte Massif of Southern Calabria reveal an Alpine history marked by two main superimposed kinematic regimes. (i) A first phase corresponds to the piling up of basement nappes with a top-to-the-SE vergence, i.e in a direction orthogonal to the belt trend and towards the Adriatic foreland. This external vergence is similar to what is observed in both Northeastern Sicily and Northern Calabria. In Sicily, the age of nappe piling is Alpine, as evidenced by pinched slices of Mesozoïc sediments. In the Aspromonte Massif, thrusting age is less constrained. Our data suggest remnants of late Hercynian structuration before the Alpine stacking. (ii) A second phase corresponds to the thinning of the continental crust, dated at around 30 Ma by both geochronological and stratigraphical data. This extension is mainly localized on two low-angle detachment contacts, with top-to-the-NE displacement. The lower one corresponds to the reworking of the former main nappe contact. The upper one is a large detachment fault cutting across the pile from upper sedimentary levels down to metamorphic basement. Extension of similar Alpine age and similar internal vergence has been already recognized in other parts of the Calabro-Peloritan Arc: in the basement nappes of Northeastern Sicily and in the ophiolitic units of Northern Calabria. Coming back to the original geometry and position of the Calabro-Peloritan belt, before its bending and the opening of the Liguro-Provençal and Tyrrhenian basins, we evidence a homogeneous Oligocene NE-SW extension all along the Calabro-Peloritan segment of the Alpine Mediterranean belt. This tectonometamorphic history is best explained within the framework of the continuous Tertiary westward dipping subduction of the Tethyan oceanic domain below the European active margin and the progressive eastward retreat of the Apennine trench since Oligocene times

    Alpine tectonics in the Calabrian-Peloritan belt (southern Italy): New Ar-40/Ar-39 data in the Aspromonte Massif area

    No full text
    International audienceThis study provides new Ar-40/Ar-39 geochronological constraints on the age of the Alpine tectonics in the Aspromonte Massif (southern part of the Calabrian-Peloritan belt). This massif exposes the upper units of the Calabride Complex which originated from the European continental margin. The Calabride Complex was incorporated in the Alpine orogenic wedge and then integrated into the Apennines and Maghrebides fold- and-thrust belts. Throughout the Calabride Complex there is evidence for a two stage tectonic history, which remains however rather poorly dated: Alpine nappe stacking is followed by extensional reworking along the former thrust contacts or along new detachment surfaces. Our new ages suggest that exhumation of the uppermost units, which accompanied nappe stacking, probably started at 45 Ma and that the deepest units were almost completely exhumed at 33 Ma. This kinematics probably corresponds to syn-orogenic extension while the end of exhumation is clearly related to the extensional tectonics dated at 28.6 Ma along detachment structures.;Our geochronological data reveal a very short lag time between accretional and extensional processes in this part of the Mediterranean Alpine orogenic belt. The direction of extension, when the units are restored to their initial position (i.e. before the opening of the Western Mediterranean basins and the bending of the arc) is NNE-SSW. Such a direction does not fit with the eastward slab-retreat model generally put forward to explain extension in the Western Mediterranean. In contrast, we provide evidence for roughly N-S middle Oligocene extension in the accretionary prism, not previously described in this part of the Mediterranean domain

    Submicrometer Hyperspectral X-ray Imaging of Heterogeneous Rocks and Geomaterials: Applications at the Fe K-Edge

    No full text
    International audienceBecause of their complex genesis, rocks and geomaterials are commonly polycrystalline heterogeneous systems, with various scale-level chemical and structural heterogeneities. Like most other ÎĽ-analytical techniques relying on scanning instruments with pencil-beam, the X-ray absorption near edge structure (XANES) technique allows elemental oxidation states to be probed with high spatial resolution but suffers from long acquisition times, imposing practical limits on the field of view. Now, regions of interest of sample are generally several orders of magnitude larger than the beam size. Here, we show the potential of coupling XANES and full-field absorption radiographies with a large hard X-ray beam. Thanks to a new setup, which allows both the acquisition of a XANES image stack and the execution of polarization contrast imaging, 1 to 4 mega-pixel crystallographic orientations and Fe oxidation state mapping corrected from polarization effects are obtained in a couple of hours on polycrystalline materials with submicrometric resolution. The demonstration is first carried out on complex metamorphic rocks, where Fe3+/Fetotal images reveal subtle redox variations within single mineralogical phases. A second application concerns a bentonite analogue considered for nuclear waste and CO2 storage. Proportion mappings of finely mixed phases are extracted from hyperspectral data, imaging the spatial progress of reaction processes essential for the safety of such storage systems
    corecore