51 research outputs found

    Epimerization of trans-Cycloalkenes with the X–C=C–SeR*-Unit – The Steric Demand of X = H, F, Cl, Br, I, Me, Et and CF3

    Get PDF
    Trans-cycloalkenes with the X–C=C–SeR*-unit and ring sizes from 9 to 20 have been synthesized. Bond the selenium atom is the chiral (S)-o-(1-Methoxypropyl)phenyl-residue R*, and X = H, F, Cl, Br, I, Me, Et and CF3. The planar-chiral trans-cycloalkenes in combination with the chiral residue R* exist as two diastereomers. These can be distinguished in principle by NMR spectroscopy. We have studied the epimerization of the trans-cycloalkenes, i.e., the 180° rotation of the X–C=C-unit through the cavity of the ring. The measurements were done with variable temperature 13C NMR spectroscopy in the range from –110 to 140°C. The obtained values of the Gibbs energy of activation ΔG‡C depend strongly on the ring size. Furthermore, the ΔG‡C values show dramatic steric effects due to the groups X. The steric requirement of X increases in the series H << F << Cl < Me < Br < I < Et < CF3. Here, F is significantly larger than H, and CF3 is larger than Et. The corresponding iPr-compounds could not be synthesized. The transition state structures of the ring inversion for ring sizes 8–20 were calculated at the DFT level of theory

    Benzylic Fluorination Induced by a Charge-Transfer Complex with a Solvent-Dependent Selectivity Switch

    Get PDF
    We present a divergent strategy for the fluorination of phenylacetic acid derivatives that is induced by a charge-transfer complex between Selectfluor and 4-(dimethylamino)pyridine. A comprehensive investigation of the conditions revealed a critical role of the solvent on the reaction outcome. In the presence of water, decarboxylative fluorination through a single-electron oxidation is dominant. Non-aqueous conditions result in the clean formation of α-fluoro-α-arylcarboxylic acids

    A new isoflavone from stem bark of Millettia dura

    Get PDF
    A new isoflavone (7,3’-dimethoxy-4’,5’-methylenedioxyisoflavone) and three known isoflavones [isoerythrinin A 4’-(3-methylbut-2-enyl) ether, isojamaicin and nordurlettone] were isolated from the stem bark of Millettia dura (Leguminosae). The structures were determined by spectroscopic methods. KEY WORDS: Millettia dura, Leguminosae, Isoflavone, 7,3’-Dimethoxy-4’,5’-methylenedioxyisoflavone, Isoerythrinin A 4’-(3-methylbut-2-enyl) ether, Isojamaicin,Nordurlettone_Bull. Chem. Soc. Ethiop. 2003, 17(1), 113-115

    Phosphorylation of C6- and C3-positions of glucosyl residues in starch is catalysed by distinct dikinases

    Get PDF
    AbstractGlucan, water dikinase (GWD) and phosphoglucan, water dikinase (PWD) are required for normal starch metabolism. We analysed starch phosphorylation in Arabidopsis wild-type plants and mutants lacking either GWD or PWD using 31P NMR. Phosphorylation at both C6- and C3-positions of glucose moieties in starch was drastically decreased in GWD-deficient mutants. In starch from PWD-deficient plants C3-bound phosphate was reduced to levels close to the detection limit. The latter result contrasts with previous reports according to which GWD phosphorylates both C6- and C3-positions. In these studies, phosphorylation had been analysed by HPLC of acid-hydrolysed glucans. We now show that maltose-6-phosphate, a product of incomplete starch hydrolysis, co-eluted with glucose-3-phosphate under the chromatographic conditions applied. Re-examination of the specificity of the dikinases using an improved method demonstrates that C6- and C3-phosphorylation is selectively catalysed by GWD and PWD, respectively

    Isolation and Antimicrobial Activities of Phytochemicals from Parinari curatellifolia (Chrysobalanaceae)

    No full text
    The widespread use of antimicrobial agents to treat infectious diseases has led to the emergence of antibiotic resistant pathogens. Plants have played a central role in combating many ailments in humans, and Parinari curatellifolia has been used for medicinal purposes. Seven extracts from P. curatellifolia leaves were prepared using serial exhaustive extraction of nonpolar to polar solvents. The microbroth dilution method was used to evaluate antimicrobial bioactivities of extracts. Five of the extracts were significantly active against at least one test microbe. Mycobacterium smegmatis was the most susceptible to most extracts. The methanol and ethanol extracts were the most active against M. smegmatis with an MIC of 25 µg/mL. The hexane extract was the most active against Candida krusei with an MIC of 25 µg/mL. None of the extracts significantly inhibited growth of Klebsiella pneumoniae and Staphylococcus aureus. Active extracts were selected for fractionation and isolation of pure compounds using gradient elution column chromatography. TLC analyses was carried out for pooling fractions of similar profiles. A total of 43 pools were obtained from 428 fractions. Pools 7 and 10 were selected for further isolation of single compounds. Four compounds, Pc4963r, Pc4962w, Pc6978p, and Pc6978o, were isolated. Evaluation of antimicrobial activities of Pc4963r, Pc4962w, and Pc6978p showed that the compounds were most active against C. krusei with MFC values ranging from 50 to 100 µg/mL. Only Pc6978p was shown to be pure. Using spectroscopic analyses, the structure of Pc6978p was determined to be β-sitosterol. The antifungal effects of β-sitosterol were evaluated against C. krusei in vitro and on fabrics. Results showed that β-sitosterol reduced the growth of C. krusei attached to Mendy fabric by 83%. Therefore, P. curatellifolia can be a source of lead compounds for prospective development of novel antimicrobial agents. Further work needs to be done to improve the antifungal activity of the isolated compound using quantitative structure-activity relationships

    Three new dihydro-β-agarofuran sesquiterpenes from the seeds of Maytenus boaria

    No full text
    As part of a project studying the secondary metabolites extracted from the Chilean flora, we report herein three new β-agarofuran sesquiterpenes, namely (1S,4S,5S,6R,7R,8R,9R,10S)-6-acetoxy-4,9-dihydroxy-2,2,5a,9-tetramethyloctahydro-2H-3,9a-methanobenzo[b]oxepine-5,10-diyl bis(furan-3-carboxylate), C27H32O11, (II), (1S,4S,5S,6R,7R,9S,10S)-6-acetoxy-9-hydroxy-2,2,5a,9-tetramethyloctahydro-2H-3,9a-methanobenzo[b]oxepine-5,10-diyl bis(furan-3-carboxylate), C27H32O10, (III), and (1S,4S,5S,6R,7R,9S,10S)-6-acetoxy-10-(benzoyloxy)-9-hydroxy-2,2,5a,9-tetramethyloctahydro-2H-3,9a-methanobenzo[b]oxepin-5-yl furan-3-carboxylate, C29H34O9, (IV), obtained from the seeds of Maytenus boaria and closely associated with a recently published relative [Paz et al. (2017). Acta Cryst. C73, 451–457]. In the (isomorphic) structures of (II) and (III), the central decalin system is esterified with an acetate group at site 1 and furoate groups at sites 6 and 9, and differ at site 8, with an OH group in (II) and no substituent in (III). This position is also unsubstituted in (IV), with site 6 being occupied by a benzoate group. The chirality of the skeletons is described as 1S,4S,5S,6R,7R,8R,9R,10S in (II) and 1S,4S,5S,6R,7R,9S,10S in (III) and (IV), matching the chirality suggested by NMR studies. This difference in the chirality sequence among the title structures (in spite of the fact that the three skeletons are absolutely isostructural) is due to the differences in the environment of site 8, i.e. OH in (II) and H in (III) and (IV). This diversity in substitution, in turn, is responsible for the differences in the hydrogen-bonding schemes, which is discussed.Fil: Paz, Cristian. Universidad de la Frontera. Facultad de Ingeniería y Ciencias; ChileFil: Heydenreich, Matthias. Universitat Potsdam; AlemaniaFil: Schmidt, Bernd. Universitat Potsdam; AlemaniaFil: Vadra, Nahir. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; ArgentinaFil: Baggio, Ricardo Fortunato. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes. Gerencia de Investigación y Aplicaciones; Argentin
    • …
    corecore