902 research outputs found
Parallel functional and stoichiometric trait shifts in South American and African forest communities with elevation
The Amazon and Congo basins are the two largest continuous blocks of tropical forest with a central role for global biogeochemical cycles and ecology. However, both biomes differ in structure and species richness and composition. Understanding future directions of the response of both biomes to environmental change is paramount. We used one elevational gradient on both continents to investigate functional and stoichiometric trait shifts of tropical forest in South America and Africa. We measured community-weighted functional canopy traits and canopy and topsoil delta N-15 signatures. We found that the functional forest composition response along both transects was parallel, with a shift towards more nitrogen-conservative species at higher elevations. Moreover, canopy and topsoil delta N-15 signals decreased with increasing altitude, suggesting a more conservative N cycle at higher elevations. This cross-continental study provides empirical indications that both South American and African tropical forest show a parallel response with altitude, driven by nitrogen availability along the elevational gradients, which in turn induces a shift in the functional forest composition. More standardized research, and more research on other elevational gradients is needed to confirm our observations
Test engineering education in Europe: the EuNICE-Test project
The paper deals with a European experience of education in industrial test of ICs and SoCs using remote testing facilities. The project addresses the problem of the shortage in microelectronics engineers aware with the new challenge of testing mixed-signal SoCs far multimedia/telecom market. It aims at providing test training facilities at a European scale in both initial and continuing education contexts. This is done by allowing the academic and industrial partners of the consortium to train engineers using the common test resources center (CRTC) hosted by LIRMM (Laboratoire d'Informatique, de Robotique et de Microelectronique de Montpellier, France). CRTC test tools include up-to-date/high-tech testers that are fully representative of real industrial testers as used on production testfloors. At the end of the project, it is aimed at reaching a cruising speed of about 16 trainees per year per center. Each trainee will have attend at least one one-week training using the remote test facilities of CRTC
Heroes or Villains? Recasting Middle Management Roles, Processes, and Behaviours
Middle management ranks are once again being questioned by scholars and practitioners alike. This introduction to the special issue represents a timely reference point for consolidating, reviving, and guiding the next wave of researchers seeking to engage this debate. We review the foundations and recent advances in middle management research and develop an organizing framework in terms of middle management's organizational roles, coordination processes, and agentic behaviours. We also identify how new ways of organizing, technology, and middle manager needs are changing to shape each of these themes. The collection of works we synthesize in this introduction offer theoretical advances and empirical evidence on how these changes affect middle management roles, processes, and behaviours. We conclude by mapping out promising research avenues for future research in middle management
Review of Case Reports on Adverse Events Related to Pre-workout Supplements Containing Synephrine
The use of pre-workout supplements has become increasingly popular, including the use of supplements containing synephrine. Synephrine might stimulate weight loss and improve sports performance by its proposed adrenergic properties. However, with its increasing popularity, numerous cases of adverse events related to synephrine use have been reported. This study provides a comprehensive overview and analysis of current case reports related to the supplemental use of synephrine. The scientific literature on cases of adverse events related to synephrine intake was collected through August 2021 using Pubmed and Google Scholar and subsequently reviewed and analysed. We obtained 30 case reports describing a total of 35 patients who suffered from medical complaints following use of synephrine-containing supplements. The patients most often presented with chest pain, palpitations, syncope and dizziness. Commonly raised diagnoses were ischaemic heart disease, cardiac arrhythmias and cerebrovascular disease. Five patients were left disabled or remained on medication at last follow-up. We here show an association between the use of pre-workout supplements containing synephrine and adverse events, mainly related to the cardiovascular system. However, we cannot exclude a role of possible confounding factors such as caffeine. Thus, the use of pre-workout supplements containing synephrine may lead to serious adverse health events, and therefore, caution is needed
Urban eddy covariance measurements reveal significant missing NOx emissions in Central Europe
Nitrogen oxide (NOx) pollution is emerging as a primary environmental concern across Europe. While some large European metropolitan areas are already in breach of EU safety limits for NO2, this phenomenon does not seem to be only restricted to large industrialized areas anymore. Many smaller scale populated agglomerations including their surrounding rural areas are seeing frequent NO2 concentration violations. The question of a quantitative understanding of different NOx emission sources is therefore of immanent relevance for climate and air chemistry models as well as air pollution management and health. Here we report simultaneous eddy covariance flux measurements of NOx, CO2, CO and non methane volatile organic compound tracers in a city that might be considered representative for Central Europe and the greater Alpine region. Our data show that NOx fluxes are largely at variance with modelled emission projections, suggesting an appreciable underestimation of the traffic related atmospheric NOx input in Europe, comparable to the weekend-weekday effect, which locally changes ozone production rates by 40%
Luminous Red Galaxies in Simulations: Cosmic Chronometers?
There have been a number of attempts to measure the expansion rate of the
universe at high redshift using Luminous Red Galaxies (LRGs) as "chronometers".
The method generally assumes that stars in LRGs are all formed at the same
time. In this paper, we quantify the uncertainties on the measurement of H(z)
which arise when one considers more realistic, extended star formation
histories. In selecting galaxies from the Millennium Simulation for this study,
we show that using rest-frame criteria significantly improves the homogeneity
of the sample and that H(z) can be recovered to within 3% at z~0.42 even when
extended star formation histories are considered. We demonstrate explicitly
that using Single Stellar Populations to age-date galaxies from the
semi-analytical simulations provides insufficient accuracy for this experiment
but accurate ages are obtainable if the complex star formation histories
extracted from the simulation are used. We note, however, that problems with
SSP-fitting might be overestimated since the semi-analytical models tend to
over predict the late-time star-formation in LRGs. Finally, we optimize an
observational program to carry out this experiment.Comment: 11 pages, 10 figures. Accepted to MNRAS
Allosteric Mechanism of Water Channel Gating by Ca2+–calmodulin
Calmodulin (CaM) is a universal regulatory protein that communicates the presence of calcium to its molecular targets and correspondingly modulates their function. This key signaling protein is important for controlling the activity of hundreds of membrane channels and transporters. However, our understanding of the structural mechanisms driving CaM regulation of full-length membrane proteins has remained elusive. In this study, we determined the pseudo-atomic structure of full-length mammalian aquaporin-0 (AQP0, Bos Taurus) in complex with CaM using electron microscopy to understand how this signaling protein modulates water channel function. Molecular dynamics and functional mutation studies reveal how CaM binding inhibits AQP0 water permeability by allosterically closing the cytoplasmic gate of AQP0. Our mechanistic model provides new insight, only possible in the context of the fully assembled channel, into how CaM regulates multimeric channels by facilitating cooperativity between adjacent subunits
A rest potential study of impurity (As, Au, Ni and Co) bearing synthetic pyrite in alkaline flotation conditions
Pyrite is an important mineralogical component of most sulphide ore deposit classes, where it commonly forms part of the gangue mineralogy, but may also represent an important ore mineral (i.e., auriferous pyrite). Effective and efficient separation of pyrite is thus a crucial step during most ore processing operations, and this is in part influenced by the pyrite mineral chemistry. Here, electrochemical measurements were used to study the reactivity of a series of well-characterised synthetic trace-element substituted pyrite samples under alkaline conditions relevant to industrial flotation. The presence of metals and metalloid impurities (As, Au, Co, and Ni) in pyrite were tested using rest potential measurements to infer oxidation and associated hydrophobicity. In the absence of any collector phases, pure- and Ni-substituted pyrite have the highest rest potential, followed by Co-substituted pyrite and couple-substituted (Co + Au) pyrite, whilst As-substituted pyrite has the lowest measured rest potential. Importantly, the degree of oxidation at the mineral surface correlates linearly with the concentration of each of the substituents, with the largest effect observed when As is the substituent. These results correspond to the semiconducting properties and noble character of each pyrite sample, with n-type pyrite (Au-, Co- and Ni-substituted) associated with noble character and high rest potential, whereas p-type As-substituted pyrite associated with least noble character and lowest rest potential. With the addition of a potassium amyl xanthate collector, the mineral chemistry further had an impact on the probability of dixanthogen formation. Increased substituent concentration in the pyrite lattice decreased the probability of dixanthogen formation, except in a sample where high Au (and moderate Co) was incorporated. These results highlight the importance of developing improved understanding of the impacts of substitution mechanisms on the surface reactivity and flotability of pyrite. Such an understanding will form the foundation for further improved (and engineered) approaches towards reagent design and mixture. This will serve to optimise separation of both gangue and valuable pyrite by using fundamental knowledge to target specific collector bands and flotation domains. © 2023 The AuthorsMinistry of Education and Science of the Russian Federation, Minobrnauka; Universiteit Stellenbosch, US; DSI-NRF Centre of Excellence for Integrated Mineral and Energy Resource Analysis, CIMERA; Institute of Experimental Mineralogy, Russian Academy of Sciences, IEM, RAS: NSh-2394.2022.1.5The authors are grateful to the DSI-NRF Centre of Excellence for Integrated Mineral and Energy Resource Analysis (CIMERA) for providing funding for this research. Special thanks to the Russian Academy of Science's Institute of Experimental Mineralogy for facilitating this collaboration and assisting with the synthesis of the pyrite crystals used in this study. In addition, Dr. Chareev acknowledges the state financial support of the leading scientific schools of the Russian Federation No. NSh-2394.2022.1.5 and the research funding from the Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Program of Development within the Priority-2030 Program) that helped establish the experimental lab used to generate synthetic samples for this study. The authors would also like to express their gratitude to the colleagues at Stellenbosch University's Central Analytical Facilities (CAF) for their excellent assistance with the SEM and LA-ICP-MS evaluations. Thanks to Remy Bucher at Ithemba Labs for his help with the XRD analysis of our samples. Additionally, the authors would like to thank the editor and reviewers for reading and evaluating our manuscript
Quantitative analysis by renormalized entropy of invasive electroencephalograph recordings in focal epilepsy
Invasive electroencephalograph (EEG) recordings of ten patients suffering
from focal epilepsy were analyzed using the method of renormalized entropy.
Introduced as a complexity measure for the different regimes of a dynamical
system, the feature was tested here for its spatio-temporal behavior in
epileptic seizures. In all patients a decrease of renormalized entropy within
the ictal phase of seizure was found. Furthermore, the strength of this
decrease is monotonically related to the distance of the recording location to
the focus. The results suggest that the method of renormalized entropy is a
useful procedure for clinical applications like seizure detection and
localization of epileptic foci.Comment: 10 pages, 5 figure
- …