1,340 research outputs found
Wind power research at Oregon State University
There have been two primary thrusts of the research effort to date, along with several supplementary ones. One primary area has been an investigation of the wind fields along coastal areas of the Pacific Northwest, not only at the shoreline but also for a number of miles inland and offshore as well. Estimates have been made of the influence of the wind turbulence as measured at coastal sites in modifying the predicted dependence of power generated on the cube of the wind speed. Wind flow patterns in the Columbia River valley have also been studied. The second primary thrust has been to substantially modify and improve an existing wind tunnel to permit the build up of a boundary layer in which various model studies will be conducted. One of the secondary studies involved estimating the cost of building an aerogenerator
Dynamic response functions for the Holstein-Hubbard model
We present results on the dynamical correlation functions of the
particle-hole symmetric Holstein-Hubbard model at zero temperature, calculated
using the dynamical mean field theory which is solved by the numerical
renormalization group method. We clarify the competing influences of the
electron-electron and electron-phonon interactions particularity at the
different metal to insulator transitions. The Coulomb repulsion is found to
dominate the behaviour in large parts of the metallic regime. By suppressing
charge fluctuations, it effectively decouples electrons from phonons. The
phonon propagator shows a characteristic softening near the metal to
bipolaronic transition but there is very little softening on the approach to
the Mott transition.Comment: 13 pages, 19 figure
Magnetic Field Effects on Quasiparticles in Strongly Correlated Local Systems
We show that quasiparticles in a magnetic field of arbitrary strength can
be described by field dependent parameters. We illustrate this approach in the
case of an Anderson impurity model and use the numerical renormalization group
(NRG) to calculate the renormalized parameters for the levels with spin
, , resonance width
and the effective local quasiparticle interaction . In the Kondo or strong correlation limit of the model the progressive
de-renormalization of the quasiparticles can be followed as the magnetic field
is increased. The low temperature behaviour, including the conductivity, in
arbitrary magnetic field can be calculated in terms of the field dependent
parameters using the renormalized perturbation expansion. Using the NRG the
field dependence of the spectral density on higher scales is also calculated.Comment: 15 pages, 17 figure
La enseñanza de "Fuerza y Movimiento" como cambio conceptual
Research has shown that many students hold alternative conceptions about motion and the factors which influence it and that an important component of these conceptions are epistemological commitments, one example of which is a cause-effect relationship. The article describes a series of microcomputer programs designed to facilitate conceptual change from an impetus-type view to a Newtonian view. A significant feature of these programs is the explicit focus given to the nature of the relationship between cause and effect and its role in the conceptual change process
First- and Second Order Phase Transitions in the Holstein-Hubbard Model
We investigate metal-insulator transitions in the Holstein-Hubbard model as a
function of the on-site electron-electron interaction U and the electron-phonon
coupling g. We use several different numerical methods to calculate the phase
diagram, the results of which are in excellent agreement. When the
electron-electron interaction U is dominant the transition is to a
Mott-insulator; when the electron-phonon interaction dominates, the transition
is to a localised bipolaronic state. In the former case, the transition is
always found to be second order. This is in contrast to the transition to the
bipolaronic state, which is clearly first order for larger values of U. We also
present results for the quasiparticle weight and the double-occupancy as
function of U and g.Comment: 6 pages, 5 figure
Phase diagram and dynamic response functions of the Holstein-Hubbard model
We present the phase diagram and dynamical correlation functions for the
Holstein-Hubbard model at half filling and at zero temperature. The
calculations are based on the Dynamical Mean Field Theory. The effective
impurity model is solved using Exact Diagonalization and the Numerical
Renormalization Group. Excluding long-range order, we find three different
paramagnetic phases, metallic, bipolaronic and Mott insulating, depending on
the Hubbard interaction U and the electron-phonon coupling g. We present the
behaviour of the one-electron spectral functions and phonon spectra close to
the metal insulator transitions.Comment: contribution to the SCES04 conferenc
Enhanced Conductance Through Side-Coupled Double Quantum Dots
Conductance, on-site and inter-site charge fluctuations and spin correlations
in the system of two side-coupled quantum dots are calculated using the
Wilson's numerical renormalization group (NRG) technique. We also show spectral
density calculated using the density-matrix NRG, which for some parameter
ranges remedies inconsistencies of the conventional approach. By changing the
gate voltage and the inter-dot tunneling rate, the system can be tuned to a
non-conducting spin-singlet state, the usual Kondo regime with odd number of
electrons occupying the dots, the two-stage Kondo regime with two electrons, or
a valence-fluctuating state associated with a Fano resonance. Analytical
expressions for the width of the Kondo regime and the Kondo temperature are
given. We also study the effect of unequal gate voltages and the stability of
the two-stage Kondo effect with respect to such perturbations.Comment: 11 pages, 12 figure
Comment on "Fano Resonance for Anderson Impurity Systems"
In a recent Letter, Luo et al. (Phys. Rev. Lett. 92, 256602 (2004)) analyze
the Fano line shapes obtained from scanning tunneling spectroscopy (STS) of
transition metal impurities on a simple metal surface, in particular of the
Ti/Au(111) and Ti/Ag(100) systems. As the key point of their analysis, they
claim that there is not only a Fano interference effect between the impurity
d-orbital and the conduction electron continuum, as derived in Ujsaghy et al.
(Phys. Rev. Lett. 85, 2557 (2000)), but that the Kondo resonance in the
d-electron spectral density has by itself a second Fano line shape, leading to
the experimentally observed spectra. In the present note we point out that this
analysis is conceptually incorrect. Therefore, the quantitative agreement of
the fitted theoretical spectra with the experimental results is meaningless.Comment: 1 page, no figures. Accepted for publication in PRL; revised version
uploaded on November 18th, 200
A topological classification of interaction-driven spin pumps
When adiabatically varied in time, certain one-dimensional band insulators
allow for the quantized noiseless pumping of spin even in the presence of
strong spin orbit scattering. These spin pumps are closely related to the
quantum spin Hall system, and their properties are protected by a time-reversal
restriction on the pumping cycle. In this paper we study pumps formed of
one-dimensional insulators with a time-reversal restriction on the pumping
cycle and a bulk energy gap which arises due to interactions. We find that the
correlated gapped phase can lead to novel pumping properties. In particular,
systems with different ground states can give rise to different
classes of spin pumps, including a trivial class which does not pump quantized
spin and non-trivial classes allowing for the pumping of quantized spin
on average per cycle, where . We discuss an example
of a spin pump that transfers on average spin without transferring
charge.Comment: 5 pages, 2 figure
Non-Fermi liquid signatures in the Hubbard Model due to van Hove singularities
When a van-Hove singularity is located in the vicinity of the Fermi level,
the electronic scattering rate acquires a non-analytic contribution. This
invalidates basic assumptions of Fermi liquid theory and within perturbative
treatments leads to a non-Fermi liquid self-energy and transport
properties.Such anomalies are shown to also occur in the strongly correlated
metallic state. We consider the Hubbard model on a two-dimensional square
lattice with nearest and next-nearest neighbor hopping within the single-site
dynamical mean-field theory. At temperatures on the order of the low-energy
scale an unusual maximum emerges in the imaginary part of the self-energy
which is renormalized towards the Fermi level for finite doping. At zero
temperature this double-well structure is suppressed, but an anomalous energy
dependence of the self-energy remains. For the frustrated Hubbard model on the
square lattice with next-nearest neighbor hopping, the presence of the van Hove
singularity changes the asymptotic low temperature behavior of the resistivity
from a Fermi liquid to non-Fermi liquid dependency as function of doping. The
results of this work are discussed regarding their relevance for
high-temperature cuprate superconductors.Comment: revised version, accepted in Phys.Rev.
- …