We investigate metal-insulator transitions in the Holstein-Hubbard model as a
function of the on-site electron-electron interaction U and the electron-phonon
coupling g. We use several different numerical methods to calculate the phase
diagram, the results of which are in excellent agreement. When the
electron-electron interaction U is dominant the transition is to a
Mott-insulator; when the electron-phonon interaction dominates, the transition
is to a localised bipolaronic state. In the former case, the transition is
always found to be second order. This is in contrast to the transition to the
bipolaronic state, which is clearly first order for larger values of U. We also
present results for the quasiparticle weight and the double-occupancy as
function of U and g.Comment: 6 pages, 5 figure