6,933 research outputs found

    High resolution imaging at large telescopes

    Get PDF
    Image recovery at a resolution limited only by diffraction is now possible at large telescopes. The theory of speckle image reconstruction is explained and the current status of a video recording and digitization system for the reconstruction procedure is described. Potential applications of the process when used with very large telescopes are discussed. The constraints on telescope design imposed by these techniques are listed

    Plasma properties and Stokes profiles during the lifetime of a photospheric magnetic bright point

    Get PDF
    Aims: to investigate the evolution of plasma properties and Stokes parameters in photospheric magnetic bright points using 3D magneto-hydrodynamical simulations and radiative diagnostics of solar granulation. Methods: simulated time-dependent radiation parameters and plasma properties were investigated throughout the evolution of a bright point. Synthetic Stokes profiles for the FeI 630.25 nm line were calculated, which allowed the evolution of the Stokes-I line strength and Stokes-V area and amplitude asymmetries to also be investigated. Results: our results are consistent with theoretical predictions and published observations describing convective collapse, and confirm this as the bright point formation process. Through degradation of the simulated data to match the spatial resolution of SOT, we show that high spatial resolution is crucial for the detection of changing spectro-polarimetric signatures throughout a magnetic bright point's lifetime. We also show that the signature downflow associated with the convective collapse process is reduced towards zero as the radiation intensity in the bright point peaks, due to the magnetic forces present restricting the flow of material in the flux tube.Comment: 14 pages, 12 figures, accepted to A&

    Self-similar Bianchi models: II. Class B models

    Full text link
    In a companion article (referred hearafter as paper I) a detailed study of the simply transitive Spatially Homogeneous (SH) models of class A concerning the existence of a simply transitive similarity group has been given. The present work (paper II) continues and completes the above study by considering the remaining set of class B models. Following the procedure of paper I we find all SH models of class B subjected only to the minimal geometric assumption to admit a proper Homothetic Vector Field (HVF). The physical implications of the obtained geometric results are studied by specialising our considerations to the case of vacuum and γ−\gamma -law perfect fluid models. As a result we regain all the known exact solutions regarding vacuum and non-tilted perfect fluid models. In the case of tilted fluids we find the \emph{general }self-similar solution for the exceptional type VI−1/9_{-1/9} model and we identify it as equilibrium point in the corresponding dynamical state space. It is found that this \emph{new} exact solution belongs to the subclass of models nαα=0n_\alpha ^\alpha =0, is defined for γ∈(43,32)\gamma \in (\frac 43,\frac 32) and although has a five dimensional stable manifold there exist always two unstable modes in the restricted state space. Furthermore the analysis of the remaining types, guarantees that tilted perfect fluid models of types III, IV, V and VIIh_h cannot admit a proper HVF strongly suggesting that these models either may not be asymptotically self-similar (type V) or may be extreme tilted at late times. Finally for each Bianchi type, we give the extreme tilted equilibrium points of their state space.Comment: Latex, 15 pages, no figures; to appear in Classical Quantum Gravity (uses iopart style/class files); (v2) minor corrections to match published versio

    The Evolution of Finite Amplitude Wavetrains in Plane Channel Flow

    Get PDF
    We consider a viscous incompressible fluid flow driven between two parallel plates by a constant pressure gradient. The flow is at a finite Reynolds number, with an 0(l) disturbance in the form of a traveling wave. A phase equation approach is used to discuss the evolution of slowly varying fully nonlinear two dimensional wavetrains. We consider uniform wavetrains in detail, showing that the development of a wavenumber perturbation is governed by Burgers equation in most cases. The wavenumber perturbation theory, constructed using the phase equation approach for a uniform wavetrain, is shown to be distinct from an amplitude perturbation expansion about the periodic flow. In fact we show that the amplitude equation contains only linear terms and is simply the heat equation. We review, briefly, the well known dynamics of Burgers equation, which imply that both shock structures and finite time singularities of the wavenumber perturbation can occur with respect to the slow scales. Numerical computations have been performed to identify areas of the (wavenumber, Reynolds number, energy) neutral surface for which each of these possibilities can occur. We note that the evolution equations will breakdown under certain circumstances, in particular for a weakly nonlinear secondary flow. Finally we extend the theory to three dimensions and discuss the limit of a weak spanwise dependence for uniform wavetrains, showing that two functions are required to describe the evolution. These unknowns are a phase and a pressure function which satisfy a pair of linearly coupled partial differential equations. The results obtained from applying the same analysis to the fully three dimensional problem are included as an appendix

    Caustics of Compensated Spherical Lens Models

    Get PDF
    We consider compensated spherical lens models and the caustic surfaces they create in the past light cone. Examination of cusp and crossover angles associated with particular source and lens redshifts gives explicit lensing models that confirm previous claims that area distances can differ by substantial factors from angular diameter distances even when averaged over large angular scales. `Shrinking' in apparent sizes occurs, typically by a factor of 3 for a single spherical lens, on the scale of the cusp caused by the lens; summing over many lenses will still leave a residual effect.Comment: 21 pages, 5 ps figures, eps

    On the spatial development of a dusty wall jet

    Full text link

    A dynamical systems approach to the tilted Bianchi models of solvable type

    Full text link
    We use a dynamical systems approach to analyse the tilting spatially homogeneous Bianchi models of solvable type (e.g., types VIh_h and VIIh_h) with a perfect fluid and a linear barotropic γ\gamma-law equation of state. In particular, we study the late-time behaviour of tilted Bianchi models, with an emphasis on the existence of equilibrium points and their stability properties. We briefly discuss the tilting Bianchi type V models and the late-time asymptotic behaviour of irrotational Bianchi VII0_0 models. We prove the important result that for non-inflationary Bianchi type VIIh_h models vacuum plane-wave solutions are the only future attracting equilibrium points in the Bianchi type VIIh_h invariant set. We then investigate the dynamics close to the plane-wave solutions in more detail, and discover some new features that arise in the dynamical behaviour of Bianchi cosmologies with the inclusion of tilt. We point out that in a tiny open set of parameter space in the type IV model (the loophole) there exists closed curves which act as attracting limit cycles. More interestingly, in the Bianchi type VIIh_h models there is a bifurcation in which a set of equilibrium points turn into closed orbits. There is a region in which both sets of closed curves coexist, and it appears that for the type VIIh_h models in this region the solution curves approach a compact surface which is topologically a torus.Comment: 29 page

    Comparing two short forms of the Hewitt–Flett Multidimensional Perfectionism Scale

    Get PDF
    Hewitt and Flett’s 45-item Multidimensional Perfectionism Scale (MPS; Hewitt & Flett, 1991, 2004) is a widely-used instrument to assess self-oriented, other-oriented, and socially prescribed perfectionism. With 45 items, it is not overly lengthy, but there are situations where a short form is useful. Analyzing data from 4 samples, this article compares 2 frequently used 15-item short forms of the MPS—Cox et al.’s (2002) and Hewitt et al.’s (2008)—by examining to what degree their scores replicate the original version’s correlations with various personality characteristics (e.g., traits, social goals, personal/interpersonal orientations). Regarding self-oriented and socially prescribed perfectionism, both short forms performed well. Regarding other-oriented perfectionism, however, Cox et al.’s short form (exclusively comprised of negatively worded items) performed less well than Hewitt et al.’s (which contains no negatively worded items). It is recommended that researchers use Hewitt et al.’s short form to assess other-oriented perfectionism rather than Cox et al.’s

    Automation in cell and gene therapy manufacturing:from past to future

    Get PDF
    As more and more cell and gene therapies are being developed and with the increasing number of regulatory approvals being obtained, there is an emerging and pressing need for industrial translation. Process efficiency, associated cost drivers and regulatory requirements are issues that need to be addressed before industrialisation of cell and gene therapies can be established. Automation has the potential to address these issues and pave the way towards commercialisation and mass production as it has been the case for ‘classical’ production industries. This review provides an insight into how automation can help address the manufacturing issues arising from the development of large-scale manufacturing processes for modern cell and gene therapy. The existing automated technologies with applicability in cell and gene therapy manufacturing are summarized and evaluated here
    • …
    corecore