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Abstract

We consider a viscous incompressible fluid flow driven between two parallel plates by

a constant pressure gradient. The flow is at a finite Reynolds number, with an O(1) dis-

turbance in the form of a travelling wave. A phase equation approach is used to discuss

the evolution of slowly varying fully nonlinear two dimensional wavetrains. We consider

uniform wavetrains in detail, showing that the development of a wavenumber perturba-

tion is governed by Burgers equation in most cases. The wavenumber perturbation theory,

constructed using the phase equation approach for a uniform wavetrain, is shown to be

distinct from an amplitude perturbation expansion about the periodic flow. In fact we

show that the amplitude equation contains only linear terms and is simply the heat equa-

tion. We review, briefly, the well known dynamics of Burgers equation, which imply that

both shock structures and finite time singularities of the wavenumber perturbation can

occur with respect to the slow scales. Numerical computations have been performed to

identify areas of the {wavenumber, Reynolds number, energy} neutral surface for which

each of these possibilities can occur. We note that the evolution equations will break-

down under certain circumstances, in particular for a weakly nonlinear secondary flow.

Finally we extend the theory to three dimensions and discuss the limit of a weak spanwise

dependence for uniform wavetrains, showing that two functions are required to describe

the evolution. These unknowns are a phase and a pressure function which satisfy a pair

of linearly coupled partial differential equations. The results obtained from applying the

same analysis to the fully three dimensional problem are included as an appendix.
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Contract No. NASI-19480 while the second author was in residence at the Institute for Computer Applications
in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-0001. Support for
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1 Introduction

Fully nonlinear travelling wave solutions in plane Poiseuille flow (PPF) have been discussed by

many authors in recent years (Zahn et al [17], Herbert [9], Pugh & Saffman [14]) with emphasis

placed upon the secondary instability problem. This instability of the finite amplitude two-

dimensional periodic flow to three-dimensional infinitesimal disturbances has been put forward

traditionally as an explanation of transition. Orzsag & Patera [13] have also suggested that,

even at Reynolds numbers below the subcritical minimum for these nonlinear two dimensional

solutions, the time scale for ultimate decay of the disturbance is sufficiently long for a small

three dimensional perturbation to grow strongly.

Subsequent work on superharmonic instability by Pugh & Saffman [14] has shown that a

more complex structure is to be expected than a simple stability transition at the Reynolds

number limit point of the neutral surface. They show that parameterization of the problem is

important and that bifurcations to quasi-periodic flows exist at points on the upper branch of

the neutral surface, leaving open the possibility of such finite amplitude solutions existing at a

Reynolds number lower than the subcritical minimum for the periodic flow.

It should be noted that other approaches have been discussed that do not rely on the

existence of finite amplitude two-dimensional travelling waves. Although the possibility of

resonant growth caused by linear mechanisms has been recognized for some time, it is only

through recent work (Gustavsson [6] [5], Gustavsson & Hultgren [7], Butler & Farrell [2], Tre-

fethen et al [15] ) concerning the initial value approach that the large amplification involved

in three-dimensional problems has been revealed. The term "bypass" has been attached to

these methods since they do not follow the more traditional idea of transition arising from

two-dimensional Tollmien Schlichting waves with three dimensional effects appearing only at a

secondary instability stage.

In this discussion we return to the finite amplitude travelling wave solutions described at

the beginning of this section, and subsequently develop an evolution equation for a phase

instability of the O(1) flow. Since these nonlinear solutions are used frequently in some areas of

both theory and computation, it seems sensible to try and discover something of their stability

and evolution. We show, in fact, that uniform wavetrains will not be observed under certain

classes of initial condition as they are susceptible to slow scale effects, with the wavenumber

developing both singularities and shock structures after a finite time in the slow scale.

The method we use to determine the evolution equation is based upon the phase equation

technique applied by numerous authors to B6nard convection problems with O(1) amplitudes

(e.g. Newell, Passot & Lega [12]). These same methods have been applied to wave problems by

Howard & Kopell [10], Whitham [16], subsequently applied explicitly to the Ginzburg-Landau

equation by Bernoff [1] and utilized in an investigation of boundary layer instability theory by

Hall [8].
A detailed discussion of the phase equation method is given by Hall [8], Bernoff [1] and is

not repeated here. The essential idea is that we have a finite amplitude wavetrain solution,

which is locally periodic in space and time, allowing wavenumber and frequency to be functions

varying on appropriate slow scales. The resulting equations of motion can then be rewritten in

terms of the new scales and a phase function that is related to the wavenumber and frequency,



through which it also satisfies a conservation equation. An expansion in terms of the slow scale

parameter will now yield a leading order system that is a nonlinear eigenvalue problem. This

relationship determines the local frequency of the wavetrain as a function of local wavenum-

bar, Reynolds number (and indirectly amplitude) yielding both supercritical and subcritical

equilibria for PPF. The next order problem will then provide a linear inhomogeneous system

that determines the frequency correction term through a solvability condition; this technique

also allows for continuation to higher orders. Now since the wavetrain evolves according to the

phase conservation equation, we can, by expanding appropriately, give a slow scale asymptotic

approximation to the evolution equation.

In §2 of this discussion the above technique is applied explicitly to the finite Reynolds

number two-dimensional PPF problem. In §2.1 we discuss the implications of the phase equation

theory when applied to the stability of a uniform two-dimensional wavetrain. We show that

the stability of a small wavenumber perturbation is governed by Burgers equation,

A, + AA¢ = =kA¢¢, (1)

for O(1) problems that correspond to distinct points on either the upper or lower branch of the

neutral surface and away from the linear neutral curve. In §3 we discuss the stability of the O(1 )

flow to an amplitude perturbation, showing that, for these length scales, nonlinear terms are

not introduced and that the amplitude equation is simply the heat transfer equation. Section 4

provides a short description of the numerical methods involved in the uniform stability calcula-

tions, presenting the O(1) results which are consistent with those of other authors Herbert [9],

Pugh & Saffman [14]. Computational results, which show the behaviour of the viscous diffu-

sion term from Burgers equation, are presented for differing leading order problems. Section 5

returns to the analysis of a uniform wavetrain and briefly discusses how the theory breaks down

for weakly nonlinear secondary flow solutions. In §6 we redevelop the phase equation theory

for a three-dimensional problem and consider the stability of wavenumber perturbations in

the limit of a weak spanwise dependence, finally in §7 we discuss the implications and future

extensions of the work.

2 Formulation of the phase equation approach

We wish to consider a finite amplitude solution to the plane Poiseuille flow (PPF) problem, in

the form of a travelling wave, then allow for a slow modulation on the new scales,

X=Sx and T=St. (2)

We now use the methods presented in Howard & Kopell [10], Bernoff [1] and applied to asymp-

totic suction boundary layer flow by Hall [8]. This analysis follows closely the finite Reynolds

number case of Hall [8], except for a few technical differences associated with bounded domains,

namely the need for a pressure eigenfunction term (discussed later). We first introduce a phase

function, O(X, T) = 50(x, t), which allows a definition of the local frequency and wavenumber

as
00 00

ft - - (3)
OX ' OT '



where a = a(X, T) and f_ = fl(X, T) are allowed to vary on the slow scales. Thus the partial

derivatives transform as

0 0 0 0 0 0
(4)

and a conservation of phase condition must be satisfied,

Oa OFt

+ ox - o. (5)

We can now develop a perturbation scheme about the fully nonlinear leading order solution

by introducing a slow scale expansion of the stream function,

(6)

which forces a similar expansion for the frequency

Ft = fro + 5f_1 + ... ; (r)

where _0 = t_ + _b0 the basic flow potential plus a leading order spatially periodic flow. We

shall use the vorticity equation formulation to describe the flow,

0(V20) + 0(V2O, O) 1 V4_b = 0, (8)
0t 0(z, y) Re

U*h. (/.with a Reynolds number, Re, defined as --y-, where is the centerline velocity, 2h the plate

separation and u the kinematic viscosity. Thus at leading order, using the above expansions,

we obtain
^ A ^ 1 ^4 ^

-f_o_72_o0 + a_ou_72_o0 - aOooV2¢ou - _e v ¢o = 0, (9)

with subscripts {0, y,...} denoting the respective derivatives, where it is unambiguous to do

so, and
0_ 0 _

- aS (lo)
--O-fi+ Oy 2

The boundary conditions are simply impermeability and no-slip at the parallel boundaries. In

terms of the streamfunction (at this order) this gives

_0o=_0_=0at y=-l-1. (11)

Similar situations have been discussed previously by Herbert [9], Pugh & Saffman [14], and this

nonlinear eigenvalue problem can be solved using the same numerical techniques, here we have

an eigenrelation

flo = ao(a, Re) , (12)

which defines a "neutral surface" in {4, Re, Amplitude} parameter space.



Now at next order, after some rearrangement, we obtain

[ OaoO_% O(4o,2_&0o+ 4o0)L{¢1}= flo(2a_ooe_ + _ooe) + Oa Oa + a 0(0, y)

0(5o, _72¢o) 1 ^2^ ^ ^2 ^ 0a
2x7 ¢oe)] 8Y ++ o(_,y) + _(4_v ¢o0_+ 4_%oo00+ a,¢%o0,

(13)

with boundary conditions ¢1_ = ¢10 = 0 at y = :1:1. To obtain the above form, (13), we have

introduced the operator L defined as

L - -flo_'2_-_ + a¢oyV _ + (9 : _ 74 (14)--_X7%°_00 Re '

and the O/OT term has been replaced using the conservation of phase as

Oa 0
0 0 (ao + ,Sa_ + ) OX Oao-Y--' -_ .... (15)

We now consider the mean flow, which from the Navier-Stokes is governed by

1 02Uoo oo- _ (_)
/ aUoj v(_.) OUoj '_ Oq_,

j=, \ ay o30y ] OX
(:6)

Here we have expanded the velocity field and pressure as

u = _(X,T,O,y)+,__,(X,T,O,y)+ ...,
p = [GX + q_I(X,T)]_ -1 +[po(X,T,O,y) + qo(X,T)] + ...,

(:7)

(18)

with

U__ -- ((f, O) T "_- U__O0 -4- U_oje ij° + )e -ij° ,

j=, -

-_-Oj : (Uoj, _)Oj) T , (19)

2 the basic driving pressurewhere U denotes the non-dimensionalized basic flow, G = -_-7

gradient and (_) a complex conjugation. At next order we obtain

1 _2 I/,10

Re Oy 2

Opoo 0flo Ouoo [-yOuoo O0
- OX + Oa Oa o_x + _ OX + -_v v'°Y

v-, t ,."_oj lj Oqo
+ L uoj--+ .--+v,j@)+--

i=-oo _ OX vo3 0y _,y / OX '
(20)

where poo is determined from the 0(1) problem and

U, = UlO + "4- Ulj g , Uli = (U,i, _)li) T ;

j=l -

(2_)
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the summationterm in (20) is performedwith negativesubscripts denoting a complexconju-
gation. The equation of continuity at this order, 0(5), is

Oul OUo Or1

+ -5-2+ o--;= o, (22)

which, when considering the mean flow terms only, reduces to

Ovlo OUoo
- (23)

Oy OX '

a first order equation for the mean flow correction to v, required to satisfy the impermeability

conditions at both walls. This difficulty was anticipated earlier and is resolved by the introduc-

tion of a further, slow scale dependent, pressure expansion

q-x(X,T)5 -a + qo(X,T) +..., (24)

producing the extra term Oq_l/OX in (16) which is chosen to satisfy (23). Thus, for imperme-

ability at both boundaries, we must satisfy

_t-1 dy = 0, (25)
Ouo____2

10X

which fixes the streamwise flux through the channel and hence determines q-1 as a function of

X at given T. This is equivalent to solving the vorticity equation for the mean flow correction

with the same boundary conditions _o0 = O_,oo/Oy = 0 at y = +1, where _00 is the part of the

stream function having zero mean with respect to the phase, 0.

Now we have an 0(5 °) problem that can be solved numerically to give f_0(a, Re) and an

expansion in terms of 5 giving a further system (13), which is used to compute f_l at a given

neutral surface point. The homogeneous form of (13) is solved by _00 (corresponding to the

existence of a translationally invariant solution, since any arbitrary constant may be added to

the phase) and so ftl is determined by a solvability condition at 0(5). The form of (13) is

a (Aq) + _y(Bq) + C_q = H, (26)

so premultiplying by the adjoint vector, r T = (rl,..., r6), and integrating by parts gives

-a_---_(AVr) - _---_(BTr) + CTr = 0 (27)

as the adjoint equation for the homogeneous form of (26), with

q = (¢1,4¢1o, r , (2s)

A

1 0

0 0

0 1

0 0

0 0

0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0 '

0 0 0 0

0 0 1 0
Re

(29)



and

S

00000 0

10000 0

00100 0

00000 0

00010 0
1

00000-_

(30)

C

0 -1 0 0 0 0

0 0 -1 0 0 0

0 0 0 -1 0 0

0 0 0 0 -1 0

0 0 0 0 0 -1

o s  +;oo o

(31)

The boundary conditions are also determined by the above process and are easily shown to be

rs=rs=0at y=-4-1, (32)

plus a periodicity condition. Thus the solvability condition is

ff_ [+l r6H6 dydO=O,
=0 Jy=--I

(33)

giving

Oa {ff: fy+l M(O, y)dydO -V2¢oo dydO (34)_1 - OX =o =-x =0 =-1 '

where M is the term in the square brackets in (13) and H = (0,..., 0, Hs) T.

Given f_l we can now write down the phase conservation condition upto O(_) in the form

Os 0fl00a O_ffOV_-_ + _ _ - 6 _,._ (-f_,) + .... (35)

This is an evolution equation for a = a(X, T), which we could in principle continue to any

order through this expansion scheme; rather than solving this directly we shall restrict our

attention to a somewhat simpler problem.

2.1 Stability of Uniform Wavetrains

Here we wish to discuss the stability of a fully nonlinear uniform wavetrain to a small, slow

scale, wavenumber perturbation. Hence, following the above expansion scheme, we obtain an

O(_ °) problem with a phase function of leading order form

Oo = soX - ao(ao)t, (36)

where {s0, Re} defines a point upon the neutral surface at O(1) disturbance energy, with

associated frequency f/o. If we now perturb the wavenumber of this uniform solution with a

slowly varying function A,

a = So + A(X,T), (37)



and perform the above analysis, the evolution equation reduces to

o@A(X,T)+ _0-2 ( T)+ _+ _+ .... 0. (38)

Now we introduce a Taylor series expansion for _ti about the uniform solution, and a transfor-

mation of the streamwise coordinate to a new frame of reference, moving with speed _(c_0),
to obtain

(39)

Here we have defined _-,_ and (I)(a) by

so that

r = qT, (40)

= X- fl_(a0)T, (41)

Oa

_-_1 -- 0X (I) (o/) , (42)

0 0 _ ao(a0)o (43)

O 0
, -- (44)

ox o_ "

We therefore obtain a leading order balance for U = 6 and A -,_ 0(5).

Now an appropriate rescaling will reduce this evolution equation to the standard form for

Burgers equation, namely

A, + AA_ = t_A_, (45)

which has well known properties. This _pproach again follows that given by both Hall [8]

and Bernoff [1], where Burgers equation has been derived by applying this technique to both

the asymptotic suction boundary layer and the Ginzburg-Landau equation. Whitham [16] has

discussed the dynamics of this equation in detail, it has an exact solution via the Cole-Hopf

transformation,
0

A = -2p_--_ log(_b), (46)

which removes the nonlinear term reducing the evolution equation to the form of the heat

diffusion equation,

¢_ = _¢_ + C(r)¢, (47)

where C(T) is set to be identically zero since this merely corresponds to a scaling of the depen-

dent variable. Now for the initial value problem, with known A((, 0) = F((), it is possible to

obtain the analytical solution

, i_+ { 1/; }4x/_4__ _ exp 41_r 2# F(fl) dr/ dr/ , (48)

7



through an application of Laplace transform methods. Therefore the solution is

(49)

where

D = .v F(q)d_/ + 2t (50)

This can support both shock structures and singularities at finite times. For a positive

diffusive term on the right of (45) we have a bounded solution which will decay for a local-

ized/periodic disturbance. For a negative right hand side the solution is diffusively unstable and

will become singular at finite time, indicating that the slow variation assumption is no longer

appropriate and a return to the full equations of motion is required. Weak shock structures are

discussed by Bernoff [1] who notes that for a small monotonic wavenumber variation such that

lim a = a_ (51)
.Z"--_ _ O0

and

lira a = a+,

then Burgers equation applies as a leading order form for the evolution equation if

(52)

Aa=a+--a_ <<1. (53)

Here we also require that the unmodulated wavetrain corresponds to a distinct point on either

the upper or lower branch of the neutral surface at O(1) amplitude. Now this wavenumber

variation will eventually become concentrated into a weak shock structure of width O(_-d) in

the unscaled streamwise coordinate, if

< 0, (54)

moving with speed

c= (55)
/k¢_

a discretized form of the group velocity. If this variation in wavenumber (As) increases then

the slow scale assumptions are eventually lost (as with the finite time singularity case) and the

evolution of the wave system is governed by the full equations, namely the Navier-Stokes.

In this case (stability of uniform wavetrains) we should also note that the leading order

problem is simplified since there is no slow scale dependency for the wavenumber. Thus the

effect of the extra pressure term Oq-1/OX (now a constant) is to induce an additional parabolic

velocity profile into the mean flow correction and corresponds to a scaling of the Reynolds

number at fixed amplitude/wavenumber. So the condition (25), which fixes the flux through

the channel, effectively determines a unique parameterization of the problem (as discussed by

Pugh & Sail'man [14]) in a self-consistent manner.

8



3 An Amplitude Perturbation Approach

We now show how the phase equation method described previously is distinct from a more

typical amplitude perturbation approach. In this method we solve the same leading order

problem for the uniform wavetrain, but it is now perturbed by an eigenfunction with a slowly

varying amplitude B = B(X, T). Again we introduce the slow scales

X=Sx, (56)

and

together with

T=St, (57)

2 = (X - cgT), (58)

a new moving coordinate system, and a further timescale

2=5T. (59)

This slower timescale is known from the previous section but could otherwise be determined

from the final solvability condition. Here % is a group velocity and given values for c_ and f_ we

can expand in terms of 6 and a phase variable 0 = v_x -ftt. Now, seeking a solution analogous

to that in Hall [8], we expand the stream function as

¢ = _o + 5¢, +..., (60)

where

_o = _ +_o, (61)

_1 = B(2,'T)o_--_-,O¢° (62)

with _ corresponding to the basic parallel flow, and

,4,,, [B(2,Sb)cq" 0"¢o= ,_! oon + _ ' n >__2. (63)

We now return to the vorticity equation (8) and substitute the above expansions along with

0 0 0
O--'_ --_ °_N + 50--X' (64)

O 0 _ 5_ O (65)0-5 _ -aN- &g + o2'

_2 _ 02 02
_ OY _ +_2002 , (66)

to give a leading order the form of the vorticity equation

o(_°) : -aV%o0+ _;o_V_00- _bo0V_jo_- (67)

9



At next order

0(6).

- - - --
1

94¢1 "-- O,
Re

(68)

with solution (62), which is an amplitude perturbation of the underlying periodic flow; in this

formulation _bo is independent of the slow scales X,T. The required group velocity is now

determined from the next order system, which can be rearranged more clearly as

Lo{6){_2} = a[2afl_oee0 + cg_72¢oe- _oy(2a2¢oee0 + _72_o0)

4a ^ 2 ^ 1
^2" _-_cV ¢o00] B 2 (69)+  o0(2 %o00 + v +

with the Lo(6) operator defined by the 0(6) equation and once terms proportional to B 2 have

been eliminated by taking 0/00 of (67). We observe that _2 = aB2¢o_, and as expected cg

corresponds to Of_o(a)/Oa in the phase equation approach, this follows by taking O/Oa of (67).
Note that an additional multiple of the homogeneous solution to ¢2 will not alter the solvability

condition at next order, but will contribute to an amplitude equation at higher order.

We also must remember that the additional pressure term (q-l, discussed in §2) is still

required in the leading order mean flow problem. Obviously a similar pressure term, Oq_a/Oo_,

is necessary at 0(62) but it is not until 0(63) that the condition determining q-1 is obtained.

Now continuity of mass, at O(63), requires the same constant mass flow condition to be satisfied

for impermeability of the boundaries. Thus we determine q-l, appearing in the leading order

problem, in the same manner as discussed in the phase equation approach.

The same process can be repeated for the problem at next order which becomes

after again eliminating the B 3 terms by taking 0_/002 of (67). The M expression, in (70), is as

defined previously in the phase equation analysis with {flo, 0_o} replaced by {fl, q} and K

is given by

0(¢o,  o000)
K = 2a3_¢oeoeo + cga2_72¢oee + " 0(0, y)

+ a2 0(_bo, V2g)o0) + a3 0(¢o0, _72¢oo) + 2a4 0(¢o0, ¢o00)
o(0,y) 0(0,u) o(0,u)

+ + ---
0(0, y) 0(0, y) Re

(71)

Although at first sight (70) appears to be Burgers equation, reproduced through an ampli-

tude perturbation approach, it does in fact reduce to a simpler form once we have observed that

a particular solution is available to remove the nonlinear term from the solvability condition;

I" 20¢o_ / (72)
[ / = K .

10



Similarly by an inductive method we can show that a rescaling does not reintroduce nonlinear

terms (which will be of the form B'_OB/Of() into the amplitude equation, since we can develop
a general particular solution;

a n+l On¢o_

n! O0 '_ (73)

If we now follow the same method outlined in section two we can obtain a solvability

condition at this order, namely

B, _ fo-r6_V2_boo dOdy ÷ B22 fyfoMr6 dOdy -=O. (74)

This is the heat transfer equation; the solution is characterized by the sign of the diffusive term,
given by

{_q-1 _2-z- }{_y--kl _2,a- ^ ^ }-1=-1 =o Mr6dedy =-1 =o-r6V_O°ededy = _(a) (75)

in the previous notation. So we note that these amplitude perturbations are of less interest

than the corresponding phase instabilities; since they are governed by the heat equation the

solutions will simply decay exponentially to zero or grow becoming singular in a finite time.

Thus we have stable decaying solutions for ¢(a) < 0 but when _5(a) > 0 we must at some stage

return to the full evolution equations to determine the development as higher order spatial and
temporal derivatives are reintroduced.

4 Numerical Methods

4.1 The leading order problem

In solving the leading order form of the vorticity equation we look for solutions that expand as

O<)

@o = _ + _ _,o,_ei'_° , (76)
n=--O0

where 0o is the leading order term in the expansion of the stream function _b, (6), and 0 = Dt_

The vorticity equation (8) reduces to, after substitution of the above form, to

Re(D2-n2a2)2_bo_-ian{f{f --_J(D2-n2a2)Oon-tbo,_D20}

+ ia (n - m)Oon_m(D 3 - rn:a2D)¢om
m----

- mD¢o,__m (D 2 - rn 2a:)¢om } O, (77)

for n = 0, :kl, :k2,... with boundary conditions _b0,_ = D_0,_ = 0; where D =_ d/dy. Now we

solve this with a truncation of the Fourier modes and a Chebyshev expansion in the y-direction
for each harmonic,

= ---f- + a,_Tr(y), (78)
7"=1

11
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Figure 1: A cross section of the neutral surface at a = 1.1 Nh = 1,2.

along with C = ½(1 -T2). This formulation has been applied previously by Herbert [9] to plane

Poiseuille flow with a constant pressure gradient rather than the constant mass flux condition

we apply in this case.

If the harmonics are truncated at Nh, and the Chebyshev series at No, this yields a numerical

problem that can be solved using Lanczo's r-method with N_(Nc + 7) nonlinear equations plus

a coupled mean flow problem. We also note that the computational task can be simplified by

assuming the symmetry condition

_b,_(y) = (-1)'_+1%_(-y), (79)

together with requiring a real solution,

(80)--n _ V_-Fn •

The r-method is essentially equivalent to determining the higher Chebyshev coefficients through

the boundary conditions, however we can only replace two of the dynamical equations with

boundary conditions and therefore have to retain at least one r element. Various methods were

investigated for the solution of these simultaneous nonlinear equations and finally a Newton

iteration technique was found to provide the best convergence over large amplitude ranges. We

write the nonlinear system of equations as

f(x) = 0__, (81)

12
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Figure 2: Variation of frequency with E at a = 1.1 .

0.08

where

__X = (_o,all,al2,..._alN_,a20, a21,.. ...._a2N_aNhO, ,aNhN_) T

and at each iteration level solve

g_z = -f(xk),

to give

where J is the Jacobian

xk+ 1 = x k + _z,

Oxz Ox " " "oH
Oxl Ox2 " " " Ox,.n

: : :

Oxl Ox2 " " " Oxm

(82)

(83)

(84)

(85)

The number of unknowns in this solution procedure can be effectively halved by applying the

symmetry assumptions discussed above. From this nonlinear eigenvalue problem we determine

the relationship between f_0 and {a, Re}, to do this we specify an amplitude of disturbance by

choosing a value for the first Chehyshev coefficient, al0, in the expansion of the fundamental

mode. Without loss of generality we can assume that this amplitude measure is real since this

corresponds to a unique determination of the phase. Here the initial guess for a solution of the

13
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Figure 3: A cross section at Re = 3500 for Nh = 1,2.

system, at a general neutral surface point, is derived from an interpolation of previous "nearby"

solutions. Since a value for one of the Chebyshev coefficients is specified we must replace it by

some other unknown in the Newton iteration scheme, typically the frequency.

As discussed in §2 we must also iterate upon the additional pressure constant, Oq-1/Ox in

the mean flow equation (16), to satisfy the constant mass flux condition. At each level of the

iteration scheme described above we compute xk, then the corresponding mean flow problem

is solved directly, including the constant Oq_l/C3x, from (16). We continue the iteration, as

described above, until some measure of convergence is satisfied, which in this case we choose

to be that the frequency correction and largest change in Chebyshev coefficients are less than

preset tolerances.

In figure 1 we show a typical cross section of the neutral surface at a fixed wavenumber, for

which there are no linearly unstable modes. These results are consistent with those obtained

by Pugh & Saffman [14]. The disturbance energy here is defined as

where

Nh

E = _ E., (86)
n=l

E= = J5 ÷ In ¢o 12)dy,
8 J-1

a normalized energy measure for each harmonic.

(87)
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Figure 4: The neutral surface at a = 0.95

In figure 2 we show the variation of the frequency for the same cross section, and figure 3

displays the form of the cross section for a fixed subcritical Reynolds number. Finally in figures

4 and 5 we show several cross sections for separate wavenumber choices of {0.95, 1.08}, showing

the effect of higher harmonics.

We found that Arc = 40 was generally sufficient to give converged results for a chosen number

of harmonics in this Reynolds number range. Although the inclusion of higher harmonics still

altered the mid-range amplitude results the qualitative behaviour remained the same, as noted

in Herbert's investigation [9] of the slightly different problem of a constant pressure gradient
flOW.

4.2 The 0(6) problem

To determine the sign of the diffusive coefficient on the right of Burgers equation we need to

solve the next order problem. In §2.1 the phase equation analysis of the uniform wavetrain

problem showed that the frequency correction term was determined by the solvability condition

_1 _ =0 =-1 =0 u=-I
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Figure 5: The neutral surface at a = 1.08

OV@o a(9(_o,2a_oo,_ + _oo) O((bo, V'2_o)
+ ao_ o----S-+ o(0,y) + o(_,v)

%

+ n_-1{4_26oo, + 4_%o00o+ 2_%o0}]_6 dvd0}. (88)

Here _o is the basic parallel flow plus two dimensional periodic flow and r6 solves the adjoint

problem, which can be shown to be

^ 0 2 0 2 0 2 0 2

with boundary conditions re = re0 = 0 at y = +1. However in our calculations we do not solve

the linear homogeneous problem (89) but rather define a new composite nonlinear problem

that is an inhomogeneous form of the order one system, this can be computed directly after the

leading order solution using the same routine. We solve

N{6o; rio} = 3M(O,y) + O(_2), (90)

where the operator N and the new parameters are given by

N = Loo) + 6Lo(_), (91)
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Figure 6: The variation of qb at a = 0.95 & Nh = 2.

(_0 = 9/0 + _f_l, (92)

_0 = _o+5¢1, (93)

with M and Lo(.) as defined previously. Hence after solving the O(1) problem we compute

the inhomogeneous terms produced by M then iterate on the amplitude of the new composite

solution at fixed {a, Re}. The frequency correction term is then determined by an application
of the condition f_l = 0(_0/0_ at _ = 0.

A point to note is that we divide the neutral surface into two sections which are referred

to as the upper and lower branches. We can see from (88) that we should expect a singular

behaviour for the coefficient of the diffusive term as we approach two other regions, namely

where the lower branch connects with the E = 0 plane and where the upper and lower branches

join at finite amplitude. The singularities are due to the way in which the amplitude and

frequency vary with a at these points and further work is required near these regions.

We present in figures 6 and 7 the behaviour of the diffusion coefficient in the evolution

equation (as the O(1) solution varies along the lower branches shown in figures 4 and 5) since

this essentially characterizes the solution; we plot _(a0) where fh = _(a)Ax. Since the linear

neutral curve exists for each of these wavenumbers we will find a singular behaviour of ¢ at

a higher Reynolds number where the neutral surface intersects the E = 0 plane as discussed
above.

We have carried out calculations (of _), with more harmonics, for a number of typical
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Figure 7: The variation of • at a = 1.08.

parameter values and find that such results have the same qualitative behaviour. In fact the

main effect of the higher harmonics is to alter the cross section shape as shown in figure 3

thus altering the position of the singularities when evaluating ¢ for varying Reynolds number,

wavenumber or amplitude. In figures 8 and 9 we show the behaviour of the coefficient as a

function of the wavenumber c_, the vertical lines in figure 8 show the critical wavenumbers

predicted by linear theory. Finally figures 10 and 11 show the behaviour for solutions that

correspond to points upon the upper branch of the neutral surface at a = 1.1, Nh = 1 and

a = 0.9707, Nh = 1,2 respectively.

5 The Evolution Equation as E --+ 0

As noted in the previous section the phase equation method is only valid for finite amplitude

periodic states; if we allow the leading order solution to approach the linear limit then the

coefficient ¢, in Burgers equation, becomes singular. A simplistic approach would be to return

to the uniform wavetrain problem and allow the O(_ °) system to be a small amplitude solution

with a phase function of leading order form

Oo= aoz - flo(ao)t. (94)
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In this formulation {ao, Re} is a point on the lower branch of the neutral surface in the weakly

nonlinear region with

,_o- _,,+ a, I_l <<], (95)
where c_ is a wavenumber corresponding to a point on the linear neutral curve. If we perturb

this solution with a slowly varying function A,

o_ = ao + A(X,T), (96)

then, as we approach the linear neutral curve, we know that the neutral surface has the scalings

A = O(la- a,,]½), (97)

f_ = f_,_+ O(a- an), (98)

for some amplitude measure A and where fl,_ is a frequency associated with the linear solution.

The full form of the evolution equation is

( ) 0{ }0A OA = 30-X ¢(a)_-_ + _a2(_) + , (99)0---f+ a0(_o)+ zxa;(_0)+ ... b-E '

or equivalently,

rl-_rOA _ _ flo (a° ) A 2 0 _ ;j 02 A-_7+_;(_0)A + +.... = _¢(_0)
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+_{_,/_o/(0_)_ , 0_\ O_ } + 0 (ao)A-_ +...} + 52-_ 2 +..., (100)

after applying the substitutions (40)-(42).

Therefore approaching the linear neutral curve may reintroduce other terms from the ex-

pression

a_ a_o\ a_) aO_oAa__ +..., (101)

since applying the scalings (97)-(98) to equation (88) we see that

1
_(_o) ~ --, (102)

and the above terms can be of the same order of magnitude when

,7"-"ZX"-,6½,-' ,_. (]03)

However the theory in this limit is more complex, as we approach the linear neutral curve the

amplitude will no longer be determined explicitly from the leading order eigenvalue problem.

So instead of assuming the weakly nonlinear scalings (97)-(98) we must determine the real

amplitude of the weakly nonlinear uniform wavetrain by solving an appropriate nonlinear partial
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Figure 10: The variation of ¢ for upper branch solutions at a = 1.1.

differential equation. This amplitude equation will in general be coupled to a limiting form of

the phase equation. Thus as we move from a fully nonlinear to a weakly nonlinear uniform

wavetrain solution (for the leading order problem) we obtain two eigenfunctions for the problem

and so must satisfy two, coupled, real partial differential equations (for the two-dimensional

case). These two real equations may then be combined to recover a single complex evolution

equation equivalent to that obtained by an application of the Stuart-Watson approach to the

plane Poiseuille flow problem. Furthermore, in this limit, we no longer have a small parameter,

_, that is arbitrary, it will now be related to the magnitude of the wavenumber displacement

from the linear neutral value, an.

The connection of the phase equation method to the appropriate weakly nonlinear theory

proves difficult in general, indeed the analysis still remains incomplete for convection problems in

which phase--equation methods have been applied for some years. The recent works of Newell,

Passot & aega [12], Newell & Passot [11] and Cross _: Newel] [3] have discussed the points

above and gone some way towards resolving the difficulties, although they restrict attention

to much simplified model equations for convection (e.g the Swift-Hohenburg equation). In

particular Cross and Newell [3] show how the evolution equation for such a model system can

be matched with the Newell-Whitehead-Segel (NWS) equation in the weakly nonlinear limit.

In their analysis they demonstrate that the limiting forms of the phase evolution equation and

the amplitude equation (required in this limit) form the imaginary and real parts of the NWS
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evolution equation respectively, hence they can be combined to match with previous results.

6 A 3-D Phase Equation Theory

We now apply a generalized (following Howard and Kopell [10]) form of the two dimensional

phase equation method to a spanwise dependent problem. To achieve this we first introduce a

further spanwise scale

Z = _z, (104)

and generalize the phase as a function of three variables, O(x, z, t) = O(X, Z, T)/,5, now defining

a spanwise wavenumber,/3, by

B = Oz. (105)

The consistency conditions in this approach are

aT + fiX = O, (106)

aZ--_X = O, (107)

fit + flZ = O, (108)

where both wavenumbers and frequency are functions of the slow scales X, Z, and T. We restrict

attention to the stability of uniform wavetrains, considering a leading order problem that is an
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oblique travelling wave solution at finite amplitude. We now perturb the wavenumbers as

a = ao + _A1 (X, Z, T),

_ = _o+ _A2(X,Z,T),
(109)

(110)

and hence transform the partial derivatives in the following manner

o o o)-- -+ +5 A1 + (111)

Ooz _ _°°+_ zx2 +g2 '

o o ( 0o)o5 -* -a°N + _ -a, + _-fi + .... (113)

We also expand the velocity field and pressure function as

__=(1 - y2,0,0)r + _(0, y) + ,_ul(X,Z,r,o,y) + ...,

]P= --_-i + q__(x,z) ,5-1 + [po(o,y)+ qo(X,z,r)] + ...

(114)

(115)

where q_ are the additional pressure terms required to satisfy a constant mass flux through the

channel.

Now as before we can expand the Navier-Stokes equations in terms of the slow scale pa-

rameter, giving a leading order system

1 ^ 2A Oq-1
-flofioo + ao_o_oo + Vo_oy + 3oWo_oo - _eV3uo + aopoo - OX '

1 _2
-ftoVoo + aofZoVoo + VoVo_ + 13oWoVoo- _-_eVavo + Po_ = 0,

^ 1 ^ 2 Oq_a
-ftoWoo + O_oUoWoo+ VoWov + _oWoWoo - _eeV3Wo + _opoo - OZ '

ao_oo + voy +/3oWoo = O,

(116)

(117)

(11S)

(X19)

0_ 0 (120)¢I - (_o_+ Zg)_-_ + 0y-z,

where/to = U+uo. At this order we let q-l(X, Z) = nlX+x2Z and choose _1, n2 to satisfy zero

mass flux through the channel for the disturbance. Continuing further yields an 0(5) system

of the form

2

nt-A2[--Wo£too--_--._e_oltoO0]-3v _"_1 Ito0 -- --

2

Lv{Ul, Vl, wl, Pl } =- Al [--_oVoo t- "_eaol)ooo ]

Oqo

OX'
(121)

23



2
+ A2[--WoVoe+-__c/3oVoeo] + _lvoo,

2

Lw{Ul, Va, wl,Pl } = Al [--_toWoo + "_caoWooo]

[ __efloWooe] Oqo+ A2 -wowoo - Poe + 2 + fhwoe OZ '

where L_, { ul, vl, wl, pa } is given by

L,_ {ul , vl , w, , pl } - -f_ulo + sofioUlo + soul fioo + voul_ + v_ _ov

1 ^2

.3V _OU30U18 .__ _0Wl_O 0 __ .R__._EV3Ul 3f. o¢0Pl0 '

with analogous forms for L_ and L_.

After some work we can see that the solution is of the form

(Ul, U1,//)1, Pl )T = tllA 1 ( X, Z, T) -Iv _)12A2( X, Z, T)

Oqo
Z,T) + d °q°(x,Z,T)

¢%

+ z ,

and the solvability condition determines f_l as

where we have used

o 2,
Uso Oso-- b .o-q4,

_12- _00 0/30 z_-13 _00---_14 '

0¢ 0
-_13 = _ {ao,eo,no}fixed,

0% o
- u 2 {_o,_o,no}nxect,

(122)

(123)

(124)

(125)

(126)

(127)

(128)

(129)

(130)

(131)

(132)

with -¢o replaced by {Uo, Vo, Wo, po}.
In the usual two dimensional iteration scheme (Re fixed) we specify {So, Amplitude} and

iterate on {f/0, al }- Now for given wavenumber and amplitude, we can think of flo as a function

of _1 with the required frequency given by flo(XT) , where xl = x_ is determined by the zero

mass flux condition for the disturbance. Obviously we could equally fix {s0, flo} and iterate

on {Amplitude, aa} to define the amplitude as a function of the pressure constant. We can

apply this same argument to the three dimensional iteration scheme and so define the solutions

{____13,_14 }"
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If we continue the expansion scheme to next order we obtain a similar system of equations

with inhomogeneous terms of the form {A21, A], Alx , A2x , Alqox,...}; we state the results for

the fully three--dimensional problem in Appendix A but to simplify this problem (and outline

the basic method) we shall consider the weakly three dimensional limit of 3o _ 0. In this

limit the leading order system will be the same two dimensional problem computed in previous

sections but the solutions to the 0(_) equations are

where

(ul, v,, w,,p,)T= (u,,, v,,,o,p,1)_'A_+ (o,0,wl_,0)rA2
_T 0q0 T 8q0

+(_,,3,_,l_,o,v.j 3-2 + (o,o,_,_,o) 5-2'

(Ull ' 7211 Pll) T 0 (Uo, Vo,Po) T 8nl
, = 8Ol--"O 8C_0 (_t13, _'13, P13) T

(u13, v13, p13) T = _---_l(uo, vo, po) T
J{_0,n0,a0 ) fixed,

8wo 8_2

w12- 830 -0-_ow14'

8_o
w14 = 8n2 (_0,_0,no)fixed.

The solvability condition at this order reduces to

8flo

a, : -g_oA,(X,Z,T),

since for/30 _ 0(7), 7 << 1,

8 8

8ao{gO, vo,Po,_l}, {P13, ttl3, Y13} "_ 0(1), 8ao {Wo, _c2}, w,3 "_ 0(7),

8 8
8_o{_.to, vo,Po, Xm}, {pi4,u14, v14} "_ 0(7), 83 o{w0,x2}, w,4 "" 0(1).

(133)

(134)

(135)

(136)

(137)

(13S)

(139)

(140)

The group velocity obtained in this limit is equivalent to the two-dimensional case, as ex-

pected. Continuing the expansion scheme further, to 0(_2), yields the following after some

simplification,

[8_0L_ {u2, v_, p2} = -g_oU.O - _ouHo - _oun ullo - u_ _oo

]- v,_u11,,- p,,o+ _(2o_ou,,oo+ _ooo)/',_

1 (_,ooo)]A_+ [ -w12_oo +
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[0f_o-_- _0_0 Ul30 -- UoU13_ -- OLOUllU130 -- O_OUl3_llO -- U13UO0

- vllulay - v13Ul_y- p_3o+ (2(_ou_3oo)A10---X

-- R---_(2aoU130)] 02q°+ [ 0doOqao u13 -- u0ul3 -- P13 + 09X2

-t-[0f_o 1 _o0)] 0A10Of'--"_Ull -- ?_0Ull -- Pll "JV "_'_e (20_0Ul10 -Jr- G_x

[
_e6oo] oA2 oql[ _ + _2"5oe - --OX, (141)+

with an analogous form for the v-momentum equation and a decoupted w-momentum problem.

Continuity of mass at this order gives the further equation

c9u2 c9v2 c9A1 02qo 0A2 092qo

ao--_ + Oy ull OX u130X2 w12--0-'2- w14OZ 2

aqo Oqo (142)-  11oA12-  1 oA1 --2 - Wl.Ai - w1 /,20-5

We have used L,, (in 141) to indicate the operator L_, defined by (125), with _0 = 0, and

the boundary conditions for the systems discussed above are no-slip and impermeability at the

fixed planes y = +1. In this three dimensional formulation the additional pressure term, q0,

will contribute explicitly to the solvability condition for f_2; whereas in the previous theory this

term was formally eliminated using the stream function and vorticity equation approach. This

is analogous to the work of Davey, Hocking and Stewartson [4], concerning the weakly nonlinear

evolution of three dimensional disturbances in plane Poiseuille flow, where they found that a

secular pressure term contributed to the final form of the evolution equation.

If we consider the continuity equation for those terms which have zero mean with respect

to the phase variable 0, we obtain

_._2 = -fill 0A1 02q° OA2 - O:q° (143)0--X- - ?_130X-----_ - w12 t0Z w14 (_Z2 '

where the bar notation indicates the mean part of the relevant expression. Integration of this

equation shows that, for impermeability at both boundaries, we must satisfy the linear partial

differential equation

02q° 11 + 02q° I OA1 0_1 OA2 0_2 I
OX 2 _ 2- OX Oaoll +-oz _ 2,

(144)

where

I1 = ulsdy and I2 = t_14dy. (145)
------1 =--1

Now returning to the solvability condition determining f/2, we can see that further simpli-

fications are possible by introducing some particular solutions; for example,

L,,{Oull 0711 Opll}0gl' 0/gl' (0_;1 = $1, (146)
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Lu{OU13 aV13 aP13_0_1 ' 0_1' 0_1 J =S2' (147)

- r Ou1_art2 Op,2I,
L"lO-_a2' 0_2' cO_2J =83' (148)

where $1, $2, $3 are the [...] coefficients of the /klq0X , (q0x) 2 and /k2qoz terms respectively in

(141). These particular solutions can be applied to the system as a whole, reducing the form

of the frequency correction term to

0/_ 1 0')/_ 2 . O_2qo

a2 = a_lz_ + a_2zxl+ ¢1-82-+ ¢_-gg + _zgk-_ , (149)

where {_'_2i, (I)i} are constants determined from the appropriate integrals contained in the solv-

ability condition. Furthermore a perturbation of {a0,/30} in the leading order problem shows
that

1 c32f_0 I 02flo

a2,- 2 0a02 , ft22-- 2 0/32 (150)

The consistency conditions now determine the evolution of the wavenumber perturbations, and

applying the above results we obtain

aA1 60f_o C9A1 52 f 02._20 A1 0A1 02f_o/k 2 aA2--_- + _o ox + l O_o 5-Z + _ ox
02A1 o2A2 - 03q 0 I

+ ¢,52-r + *_o-Kg-2 + _3g2-__ +0(53)=0, (151)

0A1 0A_
-- (152)

OZ ax "

Now for a leading order balance we again introduce the slower timescale 7- (defined by 40) and

make the Galilean transformation (42). Now by defining (_ as

06 o6
o-2-= _xl , o--_=/,2, (153)

we obtain

(154)

and

qo_ + A_qozz = -A_(_e_ - ,'_36ZZ • (155)

As mentioned above the terms {¢1, d#2, (I)3} can be calculated numerically (although it is not

a trivial computation) from the integrals derived in the solvability condition, and {A1, A2, A3}

denote the coefficients {I2/L, O,q/Oao, (I2/I_) 0_2/0_o} in (144). We observe that if Oz = 0

then q0_ reduces to a constant multiple of A_, the 0(6) problem is simplified, and we return

to Burgers equation once more.
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There is little we can say about the solution of this equation without a detailed numerical

investigation and computation of the coefficients from their integral representations. The form

of the system (154)-(155) can be simplified by rescaling appropriately but only to the form

A×_ + A×A×× + AcA¢× = +A×x × + clA×¢¢ + B×× x ,

B×× + c2B_ = c2A×× + czAc_ ,

(156)

(157)

where cj are constants, which can be written in terms of those appearing previously. We

note that the first equation, (156), can be integrated with respect to X if we redefine the

dependent variable to include an arbitrary function of r. We also note (as in Davey, Hocking

and Stewartson [4]) that a return to Burgers equation (after a further rescaling) is achieved

for skewed two-dimensional perturbations, i.e. for wavenumber perturbations which may be

written solely in terms of a skewed variable

-- = ix + me, (158)

for some real values l and m. Obviously the sign of the diffusive term will determine the type

of solution obtained, but this must again be calculated from the coefficients introduced above

and any chosen values of {l, m}.

7 Conclusions

We have applied a phase equation technique to develop a perturbation theory for slowly varying

finite amplitude wavetrains, at finite Reynolds number, in plane Poiseuille flow. When the

method is applied to uniform wavetrains we have shown that a small wavenumber perturbation

evolves according to Burgers equation. We can obtain an exact solution to Burgers equation

via the Cole-Hopf transformation and the solution is characterized by the sign of the diffusive

coefficient. For a typical uniform wavetrain with O(1) disturbance energy we have discussed

how to compute the coefficients appearing in the evolution equation.

A number of numerical results, for solutions corresponding to cross sections of the neutral

surface, have been presented showing that both diffusively stable and unstable cases are pos-

sible in general. In the unstable case (_ positive) we know that the wavenumber perturbation

develops a singularity at finite time in the slow scale. For the diffusively stable case ((I) nega-

tive) it is possible for weak shock structures to appear for non-localized or non-periodic initial

conditions. We make no claims that this instability of the finite amplitude wavetrain is in any

way the "most unstable", but since an initial disturbance can always be found that does not

decay, it suggests that the use of uniform wavetrains in theory and computation needs some

justification for large scale problems.

As the shock structures in the wavenumber perturbation are approached we expect higher

order spatial derivatives to become of equal importance in the evolution equation. We see (as

noted by Bernoff [1]), by an induction argument, that higher order frequency corrections are of

the form

( Oa 02a cO'_a) (159)fl,_ = P,_ __, _-_-_, • • •, _-7 ,
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a polynomial in the slow scale derivatives of the wavenumber. Thus as the length scales shorten

all the higher order terms will become of comparable magnitude simultaneously. When all the

previously neglected terms return to the evolution equation we must return to the full unsteady

2-D Navier-Stokes equations to determine the development.

We have shown in §3 that the phase equation method is distinct from a multi-scale amplitude

perturbation approach. A perturbation of the phase in the form

e = eo( ,t) + + ..., (16o)

may be expected to be equivalent to an amplitude perturbation for e sufficiently small. For

uniform wavetrains however we showed, in §2, that for a leading order balance we required that

the wavenumber perturbation be of comparable magnitude to the slow scale parameter, thus

,-_ 5 and the multi-scale approach must be distinct. The evolution equation obtained from the

amplitude perturbation method is simply the heat transfer equation and no nonlinearity can

be introduced. For the diffusively unstable case we must rely on linear higher order derivatives

to become of comparable magnitude and alter the form of the evolution equation.

We have also shown that the evolution equation must breakdown to a different form as

the leading order problem approaches the linear limit or the region where the upper and lower

branches join at finite amplitude. This singularity is due to the behaviour of the neutral

surface in these areas, and in the weakly nonlinear case we observed that a regularization of the

evolution equation is nontrivial. Indeed this has to be the case if we are to be able to reconcile

the phase equation approach with the well known results of weakly nonlinear theory, namely

the Stuart-Watson equation.

To investigate the effects of three dimensionality we also developed a form for the evolution

equation by extending the definitions of the phase method applied in previous sections. To

simplify the basic analysis a weak spanwise dependence is allowed for in the uniform wavetrain

problem; the analogous results for a fully three-dimensional situation are stated in the Ap-

pendix. In this case we show that the evolution equation is more complex, and is coupled with

a further linear partial differential equation. This coupled equation determines an additional

pressure function (required in order satisfy an impermeability at the parallel boundaries) that

in the two-dimensional formulation is formally eliminated using a stream function approach.

The comments made above concerning the breakdown of the phase equation method, at the

E = 0 plane of the neutral surface, will similarly apply here in the three-dimensional approach.

We should expect to be able to, likewise, match the phase method, in the appropriate areas of

the neutral surface, to the results of Davey, Hocking and Stewartson [4] concerning the weakly

nonlinear development of three-dimensional disturbances. The multi-scale approach, of §3, can

be similarly extended to three dimensions, giving the heat equation with diffusion on both slow

scales although this is again linearly coupled with the same partial differential equation for the

pressure term.

Thus generally the development of, and role played by, these uniform wavetrains in PPF is

complex to determine. We have shown susceptibility to weak shocks and finite time singularities

for both upper and lower branch solutions, together with a complex regularization problem in

the E ---* 0 limit. As well as these slow scale effects we also have the superharmonic instability
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results of Pugh & Saffman[14],which occur on O(1) scales, the apparent slow decay of three

dimensional perturbations to the fully developed flow as discussed by Orzsag & Patera [13] and

the bypass mechanisms of Gustavsson et al, to mention just some of the instability mechanisms

present. Obviously it is difficult to say (in any given problem) how such mechanisms will

interact but to assume that any one will dominate over others needs to be carefully justified.

There are a number of questions that remain unanswered in this discussion; i.e. matching

the phase equation theory to a relevant approach in the weakly nonlinear case, and the effect

of the weak three dimensionality through computation of the evolution equations (154-155). If

in future we wish to produce a full numerical procedure, to give refined values for the neutral

surface, or for computation of the evolution equation with weak spanwise dependence, we should

perhaps consider replacing the numerical method described previously with a similar collocation

method. Such techniques were used successfully at a later stage by Herbert [9] and have the

advantage of reducing computation time by allowing for a simpler evaluation of the nonlinear

terms in Newtons method.

The authors would like to acknowledge the financial support of EPSRC for R.E.H.

A The Fully 3-D Problem

In this appendix we present some of the more lengthy details involved with the application

of phase equation methods to a fully three-dimensional problem; by which we mean (in this

application) the modulation over long spanwise and streamwise scales of a fully oblique uniform

wavetrain in PPF. We prefer to present these details as an appendix in order to keep the basic

method (as presented in §6 for the case of a weak spanwise dependence) as simple as possible.

Substituting the form of solution for the 0(6) system, defined by (129-132), into the inho-

mogeneous terms at 0(_ 2) yields

0A1 0A_ 0A1 OA2

+ _ -b-X+ _ -0-2-+ _ -_ -+-R7 oz
c3_qo O_qo 02qo

+ !_ _ + _ oxo---5+ Rio oz_
A Oqo Oqo Oqo Oqo

+ R1, ,-,1_ + l_,_/',_-_ + RI__1-_ + R14/x_0--2

( Oqo _2 Oqo Oqo ( Oqo _2
+ Rls \--_ ] + R_I_OX OZ + a_.l_\-_ ]

Ofi__o {i)ql Oql_ T (161)
+ _-_--\ox '°' -_-5] '

as the vector form of the momentum equations, where __L-- (L_,, L:, L_) T, together with a

continuity of mass condition

(_U 2 OQV2 OW2 _0l_11A2 (_W12A2 + (9

(:_0"-'_ q" _ + fl0_-_ -- L_ 1 -}- GO0 "*2 _-_(U12 -I- Wll)A1/_2
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OA1 OA_ OA_ OA2

02 qo 02 qo 02 qo
+ u13-g--2-7 + (u_4 + w13)-- + w_4OXOZ OZ 2

OUl3 A Oqo OWa3 A Oqo
+-N-_-$-2+---_ _-_

(_U14 A 0q0 0W14/_ (_q0

+-N-_b--_+---g - _b--_j (162)

The coefficients, denoted by ___Ri above, are straightforward to determine; for example

R1 : oqo_-_ 0--_ - _o 0-O -_°Ull (_0 /ZI1 0O (163)

0Ull /3oWll 0, 0 + /2_o---3-_ +

This system requires a solvability condition to be satisfied and therefore determines f22 for a

given leading order solution. Before computing the integrals needed for the evaluation of ['12

we note that a number of the inhomogeneous terms given above can be removed from the

solvability condition by introducing some particular solutions,

{ } {0 120v12 w120p12}=R120Ull 0Vll (_Wll (:_P|I =Rll, L On1 0_1'0nl 0nlL 0_;1' (_t_l ' (_/'_1 ' 0b;1 -- -- ' ' --

(_Ull 0/911 0Wll 0Pll =R13 ' L , , =R14 ,

0U13 07213 OWl3 0P13 --Rls, L , , , = R16 ,
L 0N1 ' 0/£1 ' 0El ' 0h;1 -- -- 0i'll 0_1 01';1 0N1 --

L_ 0_ ' 0_2 ' 0_2 ' 0_ J = R17'

(164)

(165)

(166)

(167)

together with the previous solutions (129)-(132); obviously these solutions likewise apply to

the appropriate inhomogeneous terms of the continuity equation.

The explicit content of the solvability condition can be determined by computing the adjoint

and relevant integrals, although we do not give such details here it is noted that the final form

of the frequency correction must be

^ ^ O/k1 (_ OA2

__ C3/kl __ OA2 z O2qo _- 02qo : O2qo

+ ¢3-dT + ¢4--gg+ *_-ffi + *_o--2Yz+ *'-_' (168)

for coefficients f_2i and _i, which in general must be determined numerically. Although we can

not remove the terms A_, A1A2, A_ from the solvability condition we can effectively remove
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them from the computation by noting that a further wavenumberperturbation of the systems
satisfiedby {u11,v11, w:l,pll } and {u12, v12, w12,p12} yields

1 0_f/0 _22 - 0_f/° _23 1 02f/0 (169)
fi21- 2 0_ ' 0_00&' - 2 0_o_ "

The evolution of the wavenumber perturbations is then governed by the following system

0A1 02f_o A 0A: 02f_0 A 0A2 02f_° 0_ 02A1 ¢202A_+ 0 --T + 0 - -z0

__(_302A1 ^ 02A2 ^ 03qo _. 03qo __ 03qo
0_'/)( 0' 0---_ Cs-ff_ -5 "6_--_ 2 (P7 0---_2 ' (170)

OA: hA2

0¢ 0_
(171)

02q° 02q° c92q° i OA: OA2 OA1 OA2
O_ 2 + i: + i5 -- i4 As i6_ (172)

where we have introduced the constants ii, the slower timescale r and the new coordinate _"

defined by
0fl0

( = Z- O---_oT . (173)

The equation (172) and constants i{ are obtained from solving the continuity equation (162) for

the mean flow term, v2, and applying the impermeability condition at the boundaries y = =kl.
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