7,583 research outputs found

    Englacial Pore Water Localizes Shear in Temperate Ice Stream Margins

    Get PDF
    The margins of fast‐moving ice streams are characterized by steep velocity gradients. Some of these gradients cannot be explained by a temperature‐dependent viscosity alone. Laboratory data suggest that water in the ice‐grain matrix decreases the ice viscosity; we propose that this causes the strong localization of shear in temperate ice stream margins. However, the magnitude of weakening and its consequences for ice stream dynamics are poorly understood. Here we investigate how the coupling between temperate ice properties, ice mechanics, and drainage of melt water from the ice stream margin alters the dynamics of ice streams. We consider the steady‐state ice flow, temperature, water content, and subglacial water drainage in an ice stream cross section. Temperate ice dynamics are modeled as a two‐phase flow, with gravity‐driven water transport in the pores of a viscously compacting and deforming ice matrix. We find that the dependence of ice viscosity on meltwater content focuses the temperate ice region and steepens the velocity gradients in the ice stream margin. It provides a possible explanation for the steep velocity gradients observed in some ice stream shear margins. This localizes heat dissipation there, which in turn increases the amount of meltwater delivered to the ice stream bed. This process is controlled by the permeability of the temperate ice and the sensitivity of ice viscosity to meltwater content, both of which are poorly constrained properties

    Magmatic intrusions control Io's crustal thickness

    Full text link
    Io, the most volcanically active body in the solar system, loses heat through eruptions of hot lava. Heat is supplied by tidal heating and is thought to be transferred through the mantle by magmatic segregation, a mode of transport that sets it apart from convecting terrestrial planets. We present a model that couples magmatic transport of tidal heat to the volcanic system in the crust, in order to determine the controls on crustal thickness, magmatic intrusions, and eruption rates. We demonstrate that magmatic intrusions are a key component of Io's crustal heat balance; around 80% of the magma delivered to the base of the crust must be emplaced and frozen as plutons to match rough estimates of crustal thickness. As magma ascends from a partially molten mantle into the crust, a decompacting boundary layer forms, which can explain inferred observations of a high-melt-fraction region.Comment: Accepted to JGR:Planets. 24 pages inc appendices and references. 7 figure

    The First Fermi-LAT SNR Catalog SNR and Cosmic Ray Implications

    Full text link
    Galactic cosmic ray (CRs) sources, classically proposed to be Supernova Remnants (SNRs), must meet the energetic particle content required by direct measurements of high energy CRs. Indirect gamma-ray measurements of SNRs with the Fermi Large Area Telescope (LAT) have now shown directly that at least three SNRs accelerate protons. With the first Fermi LAT SNR Catalog, we have systematically characterized the GeV gamma-rays emitted by 279 SNRs known primarily from radio surveys. We present these sources in a multiwavelength context, including studies of correlations between GeV and radio size, flux, and index, TeV index, and age and environment tracers, in order to better understand effects of evolution and environment on the GeV emission. We show that previously sufficient models of SNRs' GeV emission no longer adequately describe the data. To address the question of CR origins, we also examine the SNRs' maximal CR contribution assuming the GeV emission arises solely from proton interactions. Improved breadth and quality of multiwavelength data, including distances and local densities, and more, higher resolution gamma-ray data with correspondingly improved Galactic diffuse models will strengthen this constraint.Comment: 8 pages, 10 figures; in Proceedings of the 34th International Cosmic Ray Conference (ICRC 2015), The Hague (The Netherlands

    Plasma properties and Stokes profiles during the lifetime of a photospheric magnetic bright point

    Get PDF
    Aims: to investigate the evolution of plasma properties and Stokes parameters in photospheric magnetic bright points using 3D magneto-hydrodynamical simulations and radiative diagnostics of solar granulation. Methods: simulated time-dependent radiation parameters and plasma properties were investigated throughout the evolution of a bright point. Synthetic Stokes profiles for the FeI 630.25 nm line were calculated, which allowed the evolution of the Stokes-I line strength and Stokes-V area and amplitude asymmetries to also be investigated. Results: our results are consistent with theoretical predictions and published observations describing convective collapse, and confirm this as the bright point formation process. Through degradation of the simulated data to match the spatial resolution of SOT, we show that high spatial resolution is crucial for the detection of changing spectro-polarimetric signatures throughout a magnetic bright point's lifetime. We also show that the signature downflow associated with the convective collapse process is reduced towards zero as the radiation intensity in the bright point peaks, due to the magnetic forces present restricting the flow of material in the flux tube.Comment: 14 pages, 12 figures, accepted to A&

    Extended OH(1720 MHz) Maser Emission from Supernova Remnants

    Full text link
    Compact OH(1720 MHz) masers have proven to be excellent signposts for the interaction of supernova remnants with adjacent molecular clouds. Less appreciated has been the weak, extended OH(1720 MHz) emission which accompanies strong compact maser sources. Recent single-dish and interferometric observations reveal the majority of maser-emitting supernova remnants have accompanying regions of extended maser emission. Enhanced OH abundance created by the passing shock is observed both as maser emission and absorption against the strong background of the remnant. Modeling the observed OH profiles gives an estimate of the physical conditions in which weak, extended maser emission arises. I will discuss how we can realize the utility of this extended maser emission, particularly the potential to measure the strength of the post-shock magnetic field via Zeeman splitting over these large-scales.Comment: 5 Pages, 2 Figures, To appear in IAU 242, Astrophysical Masers and Their Environments, eds. J. Chapman & W. Baa
    corecore