42 research outputs found

    The influence of precursor on the preparation of CeO2 catalysts for the total oxidation of the volatile organic compound propane

    Get PDF
    CeO2 catalysts were prepared by a precipitation method using either (NH4)2Ce(NO3)6 or Ce(NO3)3, as CeIV or CeIII precursors respectively. The influence of the different precursors on catalytic activity was evaluated for the total oxidation of propane with water present in the feed. The catalyst prepared using the CeIV precursor was more active for propane total oxidation. The choice of precursor influenced catalyst properties such as surface area, reducibility, morphology, and active oxygen species. The predominant factor associated with the catalytic activity was related to the formation of either CeO2.nH2O or Ce2(OH)2(CO3)2.H2O precipitate species, formed prior to calcination. The formation of CeO2.nH2O resulted in enhanced surface area which was an important factor for controlling catalyst activity

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy

    Get PDF
    Background: The ability to accurately predict operative duration has the potential to optimise theatre efficiency and utilisation, thus reducing costs and increasing staff and patient satisfaction. With laparoscopic cholecystectomy being one of the most commonly performed procedures worldwide, a tool to predict operative duration could be extremely beneficial to healthcare organisations. Methods: Data collected from the CholeS study on patients undergoing cholecystectomy in UK and Irish hospitals between 04/2014 and 05/2014 were used to study operative duration. A multivariable binary logistic regression model was produced in order to identify significant independent predictors of long (> 90 min) operations. The resulting model was converted to a risk score, which was subsequently validated on second cohort of patients using ROC curves. Results: After exclusions, data were available for 7227 patients in the derivation (CholeS) cohort. The median operative duration was 60 min (interquartile range 45–85), with 17.7% of operations lasting longer than 90 min. Ten factors were found to be significant independent predictors of operative durations > 90 min, including ASA, age, previous surgical admissions, BMI, gallbladder wall thickness and CBD diameter. A risk score was then produced from these factors, and applied to a cohort of 2405 patients from a tertiary centre for external validation. This returned an area under the ROC curve of 0.708 (SE = 0.013, p  90 min increasing more than eightfold from 5.1 to 41.8% in the extremes of the score. Conclusion: The scoring tool produced in this study was found to be significantly predictive of long operative durations on validation in an external cohort. As such, the tool may have the potential to enable organisations to better organise theatre lists and deliver greater efficiencies in care

    Photoinduced force microscopy as a novel method for the study of microbial nanostructures

    No full text
    A detailed comparison of the capabilities of electron microscopy and Nano-Infrared (IR) microscopy for imaging microbial nanostructures has been carried out for the first time. The surface sensitivity, chemical specificity, and non-destructive nature of spectroscopic mapping is shown to offer significant advantages over Transmission electron microscopy (TEM) for the study of biological samples. As well as yielding important topographical information, the distribution of amides, lipids, and carbohydrates across cross-sections of bacterial (Escherichia coli, Staphylococcus aureus) and fungal (Candida albicans) cells was demonstrated using PiFM. The unique information derived from this new mode of spectroscopic mapping of the surface chemistry and biology of microbial cell walls and membranes, may provide new insights into fungal/bacterial cell function as well as having potential use in determining mechanisms of antimicrobial resistance, especially those targeting the cell wall

    Corn Response to Late-Spring Nitrogen Management in the Walnut Creek Watershed

    No full text
    A 400-ha subbasin study within the Walnut Creek watershed near Ames, IA, confirmed that using late-spring soil nitrate nitrogen (NO3–N) test (LSNT) fertilizer recommendations could significantly reduce NO3–N loss in drainage water, but detailed crop response was not reported. Herein we summarize corn (Zea mays L.) response to the LSNT program when implemented across the Clarion–Nicollet–Webster soil association. The LSNT was used to determine the recommended N fertilizer rate that was applied uniformly across each field except on check strips where zero or nonlimiting (>220 kg N ha−1) sidedress N was applied. Leaf chlorophyll (SPAD) readings, end-of-season stalk nitrate concentrations, and grain yield and quality (protein, starch, and oil content) showed significant year, field, soil map unit and N rate response. Average grain yield with the LSNT program was significantly lower than the nonlimiting rate in 1997 and 1998 but not in 1999 or 2000. This suggests that although watershed-scale implementation of the LSNT can reduce nitrate loss through drainage water, it may also increase producer risk, especially when above-normal rainfall occurs shortly after the sidedress N fertilizer is applied. To encourage adoption of the LSNT program for its water quality benefits, we suggest that federal, state, or private agencies develop affordable risk insurance or some other financial incentives to help producers minimize the potential crop risk associated with this program.This article is from Agronomy Journal 97 (2005): 1054–1061, doi: 10.2134/agronj2004.0259.</p

    Occupied Japan: A working bibliography

    No full text

    Deep Underground Neutrino Experiment (DUNE) Near Detector Conceptual Design Report

    No full text
    International audienceThe Deep Underground Neutrino Experiment (DUNE) is an international, world-class experiment aimed at exploring fundamental questions about the universe that are at the forefront of astrophysics and particle physics research. DUNE will study questions pertaining to the preponderance of matter over antimatter in the early universe, the dynamics of supernovae, the subtleties of neutrino interaction physics, and a number of beyond the Standard Model topics accessible in a powerful neutrino beam. A critical component of the DUNE physics program involves the study of changes in a powerful beam of neutrinos, i.e., neutrino oscillations, as the neutrinos propagate a long distance. The experiment consists of a near detector, sited close to the source of the beam, and a far detector, sited along the beam at a large distance. This document, the DUNE Near Detector Conceptual Design Report (CDR), describes the design of the DUNE near detector and the science program that drives the design and technology choices. The goals and requirements underlying the design, along with projected performance are given. It serves as a starting point for a more detailed design that will be described in future documents

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy (vol 33, pg 110, 2019)

    No full text

    Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II: DUNE Physics

    No full text
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay -- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. DUNE is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume II of this TDR, DUNE Physics, describes the array of identified scientific opportunities and key goals. Crucially, we also report our best current understanding of the capability of DUNE to realize these goals, along with the detailed arguments and investigations on which this understanding is based. This TDR volume documents the scientific basis underlying the conception and design of the LBNF/DUNE experimental configurations. As a result, the description of DUNE's experimental capabilities constitutes the bulk of the document. Key linkages between requirements for successful execution of the physics program and primary specifications of the experimental configurations are drawn and summarized. This document also serves a wider purpose as a statement on the scientific potential of DUNE as a central component within a global program of frontier theoretical and experimental particle physics research. Thus, the presentation also aims to serve as a resource for the particle physics community at large

    Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora

    No full text
    International audienceThe Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/cc charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1±0.6\pm0.6% and 84.1±0.6\pm0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation
    corecore