169 research outputs found

    Acute Hypersensitivity of Pluripotent Testicular Cancer-Derived Embryonal Carcinoma to Low-Dose 5-Aza Deoxycytidine Is Associated with Global DNA Damage-Associated p53 Activation, Anti-Pluripotency and DNA Demethylation

    Get PDF
    Human embryonal carcinoma (EC) cells are the stem cells of nonseminoma testicular germ cells tumors (TGCTs) and share remarkable similarities to human embryonic stem (ES) cells. In prior work we found that EC cells are hypersensitive to low nanomolar doses of 5-aza deoxycytidine (5-aza) and that this hypersensitivity partially depended on unusually high levels of the DNA methyltransferase, DNMT3B. We show here that low-dose 5-aza treatment results in DNA damage and induction of p53 in NT2/D1 cells. In addition, low-dose 5-aza results in global and gene specific promoter DNA hypomethylation. Low- dose 5-aza induces a p53 transcriptional signature distinct from that induced with cisplatin in NT2/D1 cells and also uniquely downregulates genes associated with pluripotency including NANOG, SOX2, GDF3 and Myc target genes. Changes in the p53 and pluripotency signatures with 5-aza were to a large extent dependent on high levels of DNMT3B. In contrast to the majority of p53 target genes upregulated by 5-aza that did not show DNA hypomethylation, several other genes induced with 5-aza had corresponding decreases in promoter methylation. These genes include RIN1, SOX15, GPER, and TLR4 and are novel candidate tumors suppressors in TGCTs. Our studies suggest that the hypersensitivity of NT2/D1 cells to low-dose 5-aza is multifactorial and involves the combined activation of p53 targets, repression of pluripotency genes, and activation of genes repressed by DNA methylation. Low-dose 5-aza therapy may be a general strategy to treat those tumors that are sustained by cells with embryonic stem-like properties. GEO number for the microarray data: GSE42647

    Driver Persistence, Safety and Older Adult Self-efficacy: Addressing Driving Challenges Using Innovative Multimodal Communication Concepts

    Get PDF
    New assisted driving technology provides a solution to enabling driver persistence while also addressing older adult fitness to drive issues. The proposed driver assistance system follows a detailed literature review, an analysis of secondary data, and the specification of a solution using human machine interaction (HMI) design methods. Overall, the assisted driving concept follows from a principled/ethical perspective in relation to promoting self-efficacy and enablement for older adults. The system is conceptualized as a supportive friend or ‘co-pilot’. It is argued that the use of new car-based sensors, along with machine learning intelligence and novel multimodal HMI communication methods will enable driver persistence while also promoting older adult self-efficacy and positive ageing

    A comprehensive MRI investigation to identify potential biomarkers of Osgood Schlatter disease in adolescents: A cross sectional study comparing Osgood Schlatter disease with controls

    Get PDF
    BackgroundOsgood–Schlatter disease (OSD) is the most common knee pain complaint among adolescents playing sports. Despite this, there remains controversy over the pathophysiology and whether specific anatomical characteristics are associated with OSD.PurposeThis study aimed to systematically and comprehensively characterize adolescents with OSD using magnetic resonance imaging (MRI) compared to pain-free controls, including both tissue abnormalities that may be associated with OSD, as well as anatomical characteristics. A secondary objective was to identify potential imaging biomarkers associated with pain.Study DesignCross-sectional study.MethodsAdolescents with OSD and controls were recruited from 2020 to 2022. Following a clinical exam, demographics, pain, sports participation, and Tanner stage were collected. Knee MRI was conducted on the participants' most symptomatic knee (OSD) or the dominant leg (controls).ResultsSixty-seven adolescents (46 with OSD and 30 controls) were included. 80% of participants with OSD had at least one tissue alteration compared to 54% of controls. Compared to controls, OSD had 36.3 (95%CI 4.5 to 289.7) higher odds of bony oedema at the tibial tuberosity, and 32.7 (95%CI 4.1 to 260.6) and 5.3 (95%CI 0.6 to 46.2) higher odds of bony oedema at the tibial epiphysis and metaphysis respectively. Participants with OSD also had higher odds of fluid/oedema at the patellar tendon (12.3 95%CI 3.3 to 46.6), and superficial infrapatellar bursitis (7.2). Participants with OSD had a more proximal tendon attachment (mean tibial attachment portion difference, −0.05, 95% CI: −0.1 to 0.0, p = 0.02), tendon thickness (proximal mean difference, −0.09, 95% CI: −0.4 to 0.2, p = 0.04; distal mean difference, −0.6, 95% CI: −0.9 to −0.2, p = 0.01). Those with bony/tendon oedema had 1.8 points (95% CI: 0.3 to 3.2) higher pain on palpation than those without (t = −2.5, df = 26.6, p = 0.019), but there was no difference between these groups in a functional single leg pain provocation.ConclusionAdolescents with OSD present with tissue and structural abnormalities on MRI that differed from age-matched controls. The majority had findings in the patellar tendon and bone, which often co-occurred. However, a small proportion of OSD also presents without alterations. It appears these findings may be associated with clinical OSD-related pain on palpation of the tibial tuberosity.Clinical RelevanceOur highlight the pathophysiology on imaging, which has implications for understanding the mechanism and treatment of OSD

    Serine/Threonine Kinase 17A is a Novel Candidate for Therapeutic Targeting in Glioblastoma

    Get PDF
    STK17A is a relatively uncharacterized member of the death-associated protein family of serine/threonine kinases which have previously been associated with cell death and apoptosis. Our prior work established that STK17A is a novel p53 target gene that is induced by a variety of DNA damaging agents in a p53-dependent manner. In this study we have uncovered an additional, unanticipated role for STK17A as a candidate promoter of cell proliferation and survival in glioblastoma (GBM). Unexpectedly, it was found that STK17A is highly overexpressed in a grade-dependent manner in gliomas compared to normal brain and other cancer cell types with the highest level of expression in GBM. Knockdown of STK17A in GBM cells results in a dramatic alteration in cell shape that is associated with decreased proliferation, clonogenicity, migration, invasion and anchorage independent colony formation. STK17A knockdown also sensitizes GBM cells to genotoxic stress. STK17A overexpression is associated with a significant survival disadvantage among patients with glioma which is independent of age, molecular phenotype, IDH1 mutation, PTEN loss, and alterations in the p53 pathway and partially independent of grade. In summary, we demonstrate that STK17A provides a proliferative and survival advantage to GBM cells and is a potential target to be exploited therapeutically in patients with glioma

    Refractory testicular germ cell tumors are highly sensitive to the second generation DNA methylation inhibitor guadecitabine

    Get PDF
    Testicular germ cell tumors (TGCTs) are the most common cancers of young males. A substantial portion of TGCT patients are refractory to cisplatin. There are no effective therapies for these patients, many of whom die from progressive disease. Embryonal carcinoma (EC) are the stem cells of TGCTs. In prior in vitro studies we found that EC cells were highly sensitive to the DNA methyltransferase inhibitor, 5-aza deoxycytidine (5-aza). Here, as an initial step in bringing demethylation therapy to the clinic for TGCT patients, we evaluated the effects of the clinically optimized, second generation demethylating agent guadecitabine (SGI-110) on EC cells in an animal model of cisplatin refractory testicular cancer. EC cells were exquisitely sensitive to guadecitabine and the hypersensitivity was dependent on high levels of DNA methyltransferase 3B. Guadecitabine mediated transcriptional reprogramming of EC cells included induction of p53 targets and repression of pluripotency genes. As a single agent, guadecitabine completely abolished progression and induced complete regression of cisplatin resistant EC xenografts even at doses well below those required to impact somatic solid tumors. Low dose guadecitabine also sensitized refractory EC cells to cisplatin in vivo. Genome-wide analysis indicated that in vivo antitumor activity was associated with activation of p53 and immune-related pathways and the antitumor effects of guadecitabine were dependent on p53, a gene rarely mutated in TGCTs. These preclinical findings suggest that guadecitabine alone or in combination with cisplatin is a promising strategy to treat refractory TGCT patients

    Retinoic Acid Mediates Long-Paced Oscillations in Retinoid Receptor Activity: Evidence for a Potential Role for RIP140

    Get PDF
    Mechanisms that underlie oscillatory transcriptional activity of nuclear receptors (NRs) are incompletely understood. Evidence exists for rapid, cyclic recruitment of coregulatory complexes upon activation of nuclear receptors. RIP140 is a NR coregulator that represses the transactivation of agonist-bound nuclear receptors. Previously, we showed that RIP140 is inducible by all-trans retinoic acid (RA) and mediates limiting, negative-feedback regulation of retinoid signaling.Here we report that in the continued presence of RA, long-paced oscillations of retinoic acid receptor (RAR) activity occur with a period ranging from 24 to 35 hours. Endogenous expression of RIP140 and other RA-target genes also oscillate in the presence of RA. Cyclic retinoid receptor transactivation is ablated by constitutive overexpression of RIP140. Further, depletion of RIP140 disrupts cyclic expression of the RA target gene HOXA5. Evidence is provided that RIP140 may limit RAR signaling in a selective, non-redundant manner in contrast to the classic NR coregulators NCoR1 and SRC1 that are not RA-inducible, do not cycle, and may be partially redundant in limiting RAR activity. Finally, evidence is provided that RIP140 can repress and be induced by other nuclear receptors in a manner that suggests potential participation in other NR oscillations.We provide evidence for novel, long-paced oscillatory retinoid receptor activity and hypothesize that this may be paced in part, by RIP140. Oscillatory NR activity may be involved in mediating hormone actions of physiological and pathological importance

    Effects of Aberrant Pax6 Gene Dosage on Mouse Corneal Pathophysiology and Corneal Epithelial Homeostasis

    Get PDF
    Background: Altered dosage of the transcription factor PAX6 causes multiple human eye pathophysiologies. PAX6(+/-) heterozygotes suffer from aniridia and aniridia-related keratopathy (ARK), a corneal deterioration that probably involves a limbal epithelial stem cell (LESC) deficiency. Heterozygous Pax6(+/Sey-Neu) (Pax6(+/-)) mice recapitulate the human disease and are a good model of ARK. Corneal pathologies also occur in other mouse Pax6 mutants and in PAX77(Tg/-) transgenics, which over-express Pax6 and model human PAX6 duplication. Methodology/Principal Findings: We used electron microscopy to investigate ocular defects in Pax6(+/-) heterozygotes (low Pax6 levels) and PAX77(Tg/-) transgenics (high Pax6 levels). As well as the well-documented epithelial defects, aberrant Pax6 dosage had profound effects on the corneal stroma and endothelium in both genotypes, including cellular vacuolation, similar to that reported for human macular corneal dystrophy. We used mosaic expression of an X-linked LacZ transgene in X-inactivation mosaic female (XLacZ(Tg/-)) mice to investigate corneal epithelial maintenance by LESC clones in Pax6(+/-) and PAX77(Tg/-) mosaic mice. PAX77(Tg/-) mosaics, over-expressing Pax6, produced normal corneal epithelial radial striped patterns (despite other corneal defects), suggesting that centripetal cell movement was unaffected. Moderately disrupted patterns in Pax6(+/-) mosaics were corrected by introducing the PAX77 transgene (in Pax6(+/-), PAX77(Tg/-) mosaics). Pax6(Leca4/+), XLacZ(Tg/-) mosaic mice (heterozygous for the Pax6(Leca4) missense mutation) showed more severely disrupted mosaic patterns. Corrected corneal epithelial stripe numbers (an indirect estimate of active LESC clone numbers) declined with age (between 15 and 30 weeks) in wild-type XLacZ(Tg/-) mosaics. In contrast, corrected stripe numbers were already low at 15 weeks in Pax6(+/-) and PAX77(Tg/-) mosaic corneas, suggesting Pax6 under-and over-expression both affect LESC clones. Conclusions/Significance: Pax6(+/-) and PAX77(Tg/-) genotypes have only relatively minor effects on LESC clone numbers but cause more severe corneal endothelial and stromal defects. This should prompt further investigations of the pathophysiology underlying human aniridia and ARK

    The gene expression profiles of primary and metastatic melanoma yields a transition point of tumor progression and metastasis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The process of malignant transformation, progression and metastasis of melanoma is poorly understood. Gene expression profiling of human cancer has allowed for a unique insight into the genes that are involved in these processes. Thus, we have attempted to utilize this approach through the analysis of a series of primary, non-metastatic cutaneous tumors and metastatic melanoma samples.</p> <p>Methods</p> <p>We have utilized gene microarray analysis and a variety of molecular techniques to compare 40 metastatic melanoma (MM) samples, composed of 22 bulky, macroscopic (replaced) lymph node metastases, 16 subcutaneous and 2 distant metastases (adrenal and brain), to 42 primary cutaneous cancers, comprised of 16 melanoma, 11 squamous cell, 15 basal cell skin cancers. A Human Genome U133 Plus 2.0 array from Affymetrix, Inc. was utilized for each sample. A variety of statistical software, including the Affymetrix MAS 5.0 analysis software, was utilized to compare primary cancers to metastatic melanomas. Separate analyses were performed to directly compare only primary melanoma to metastatic melanoma samples. The expression levels of putative oncogenes and tumor suppressor genes were analyzed by semi- and real-time quantitative RT-PCR (qPCR) and Western blot analysis was performed on select genes.</p> <p>Results</p> <p>We find that primary basal cell carcinomas, squamous cell carcinomas and thin melanomas express dramatically higher levels of many genes, including <it>SPRR1A/B</it>, <it>KRT16/17</it>, <it>CD24</it>, <it>LOR</it>, <it>GATA3</it>, <it>MUC15</it>, and <it>TMPRSS4</it>, than metastatic melanoma. In contrast, the metastatic melanomas express higher levels of genes such as <it>MAGE</it>, <it>GPR19</it>, <it>BCL2A1</it>, <it>MMP14</it>, <it>SOX5</it>, <it>BUB1</it>, <it>RGS20</it>, and more. The transition from non-metastatic expression levels to metastatic expression levels occurs as melanoma tumors thicken. We further evaluated primary melanomas of varying Breslow's tumor thickness to determine that the transition in expression occurs at different thicknesses for different genes suggesting that the "transition zone" represents a critical time for the emergence of the metastatic phenotype. Several putative tumor oncogenes (<it>SPP-1</it>, <it>MITF</it>, <it>CITED-1</it>, <it>GDF-15</it>, <it>c-Met</it>, <it>HOX </it>loci) and suppressor genes (<it>PITX-1</it>, <it>CST-6</it>, <it>PDGFRL</it>, <it>DSC-3</it>, <it>POU2F3</it>, <it>CLCA2</it>, <it>ST7L</it>), were identified and validated by quantitative PCR as changing expression during this transition period. These are strong candidates for genes involved in the progression or suppression of the metastatic phenotype.</p> <p>Conclusion</p> <p>The gene expression profiling of primary, non-metastatic cutaneous tumors and metastatic melanoma has resulted in the identification of several genes that may be centrally involved in the progression and metastatic potential of melanoma. This has very important implications as we continue to develop an improved understanding of the metastatic process, allowing us to identify specific genes for prognostic markers and possibly for targeted therapeutic approaches.</p

    Expression of Genes Encoding Multi-Transmembrane Proteins in Specific Primate Taste Cell Populations

    Get PDF
    BACKGROUND: Using fungiform (FG) and circumvallate (CV) taste buds isolated by laser capture microdissection and analyzed using gene arrays, we previously constructed a comprehensive database of gene expression in primates, which revealed over 2,300 taste bud-associated genes. Bioinformatics analyses identified hundreds of genes predicted to encode multi-transmembrane domain proteins with no previous association with taste function. A first step in elucidating the roles these gene products play in gustation is to identify the specific taste cell types in which they are expressed. METHODOLOGY/PRINCIPAL FINDINGS: Using double label in situ hybridization analyses, we identified seven new genes expressed in specific taste cell types, including sweet, bitter, and umami cells (TRPM5-positive), sour cells (PKD2L1-positive), as well as other taste cell populations. Transmembrane protein 44 (TMEM44), a protein with seven predicted transmembrane domains with no homology to GPCRs, is expressed in a TRPM5-negative and PKD2L1-negative population that is enriched in the bottom portion of taste buds and may represent developmentally immature taste cells. Calcium homeostasis modulator 1 (CALHM1), a component of a novel calcium channel, along with family members CALHM2 and CALHM3; multiple C2 domains; transmembrane 1 (MCTP1), a calcium-binding transmembrane protein; and anoctamin 7 (ANO7), a member of the recently identified calcium-gated chloride channel family, are all expressed in TRPM5 cells. These proteins may modulate and effect calcium signalling stemming from sweet, bitter, and umami receptor activation. Synaptic vesicle glycoprotein 2B (SV2B), a regulator of synaptic vesicle exocytosis, is expressed in PKD2L1 cells, suggesting that this taste cell population transmits tastant information to gustatory afferent nerve fibers via exocytic neurotransmitter release. CONCLUSIONS/SIGNIFICANCE: Identification of genes encoding multi-transmembrane domain proteins expressed in primate taste buds provides new insights into the processes of taste cell development, signal transduction, and information coding. Discrete taste cell populations exhibit highly specific gene expression patterns, supporting a model whereby each mature taste receptor cell is responsible for sensing, transmitting, and coding a specific taste quality
    • …
    corecore