941 research outputs found

    Aspects of Spirituality in Adolescents

    Get PDF
    This paper analyses which aspects of spirituality are valued by adolescents, and how they are interconnected with youths' life satisfaction and 'self-centeredness'. The participants were 254 adolescents (11th grade) of four different high schools from west Germany. After re-validation of the 6-factorial student's version of the ASP questionnaire (ASP-S, Cronbach's alpha = .90), we found that they appreciated most Conscious interactions, Compassion / Generosity and Aspiring for Beauty / Wisdom, while particularly Religious orientation / Prayer (Trust in God), esoteric Transcendence conviction, or Quest orientation were of lower relevance. The importance of these aspects of spirituality is known to increase with higher age. The correlation pattern between aspects of spirituality and life satisfaction dimensions differed remarkably between female and male adolescents. In particular Conscious interactions correlated with future prospects in females, while in males it correlated much better with family life and school situation. It became obvious that the non-formal aspects of spirituality in terms of relational consciousness are still vital, particularly secular humanism (i.e. Conscious interactions, Compassion / Generosity). These findings may have implications for religious educational programmes

    First Results from the HDMS experiment in the Final Setup

    Full text link
    The Heidelberg Dark Matter Search (HDMS) is an experiment designed for the search for WIMP dark matter. It is using a special configuration of Ge detectors, to efficiently reduce the background in the low-energy region below 100 keV. After one year of running the HDMS detector prototype in the Gran Sasso Underground Laboratory, the inner crystal of the detector has been replaced with a HPGe crystal of enriched 73^{73}Ge. The final setup started data taking in Gran Sasso in August 2000. The performance and the first results of the measurement with the final setup are discussed.Comment: 8 pages, revtex, 7 figures, Home Page of Heidelberg Non-Accelerator Particle Physics Group: http://www.mpi-hd.mpg.de/non_acc

    GENIUS-TF: a test facility for the GENIUS project

    Get PDF
    GENIUS is a proposal for a large scale detector of rare events. As a first step of the experiment, a small test version, the GENIUS test facility, will be build up at the Laboratorio Nazionale del Gran Sasso (LNGS). With about 40 kg of natural Ge detectors operated in liquid nitrogen, GENIUS-TF could exclude (or directly confirm) the DAMA annual modulation signature within about two years of measurement.Comment: 14 pages, latex, 5 figures, 3 tables; submitted to Astroparticle Physic

    On the relation between Differential Privacy and Quantitative Information Flow

    Get PDF
    Differential privacy is a notion that has emerged in the community of statistical databases, as a response to the problem of protecting the privacy of the database's participants when performing statistical queries. The idea is that a randomized query satisfies differential privacy if the likelihood of obtaining a certain answer for a database xx is not too different from the likelihood of obtaining the same answer on adjacent databases, i.e. databases which differ from xx for only one individual. Information flow is an area of Security concerned with the problem of controlling the leakage of confidential information in programs and protocols. Nowadays, one of the most established approaches to quantify and to reason about leakage is based on the R\'enyi min entropy version of information theory. In this paper, we analyze critically the notion of differential privacy in light of the conceptual framework provided by the R\'enyi min information theory. We show that there is a close relation between differential privacy and leakage, due to the graph symmetries induced by the adjacency relation. Furthermore, we consider the utility of the randomized answer, which measures its expected degree of accuracy. We focus on certain kinds of utility functions called "binary", which have a close correspondence with the R\'enyi min mutual information. Again, it turns out that there can be a tight correspondence between differential privacy and utility, depending on the symmetries induced by the adjacency relation and by the query. Depending on these symmetries we can also build an optimal-utility randomization mechanism while preserving the required level of differential privacy. Our main contribution is a study of the kind of structures that can be induced by the adjacency relation and the query, and how to use them to derive bounds on the leakage and achieve the optimal utility

    Gator: a low-background counting facility at the Gran Sasso Underground Laboratory

    Full text link
    A low-background germanium spectrometer has been installed and is being operated in an ultra-low background shield (the Gator facility) at the Gran Sasso underground laboratory in Italy (LNGS). With an integrated rate of ~0.16 events/min in the energy range between 100-2700 keV, the background is comparable to those of the world's most sensitive germanium detectors. After a detailed description of the facility, its background sources as well as the calibration and efficiency measurements are introduced. Two independent analysis methods are described and compared using examples from selected sample measurements. The Gator facility is used to screen materials for XENON, GERDA, and in the context of next-generation astroparticle physics facilities such as DARWIN.Comment: 14 pages, 6 figures, published versio

    Neutron-induced background in the CONUS experiment

    Full text link
    CONUS is a novel experiment aiming at detecting elastic neutrino nucleus scattering in the fully coherent regime using high-purity Germanium (Ge) detectors and a reactor as antineutrino (νˉ\bar\nu) source. The detector setup is installed at the commercial nuclear power plant in Brokdorf, Germany, at a very small distance to the reactor core in order to guarantee a high flux of more than 1013νˉ^{13}\bar\nu/(s\cdotcm2^2). For the experiment, a good understanding of neutron-induced background events is required, as the neutron recoil signals can mimic the predicted neutrino interactions. Especially neutron-induced events correlated with the thermal power generation are troublesome for CONUS. On-site measurements revealed the presence of a thermal power correlated, highly thermalized neutron field with a fluence rate of (745±\pm30)cm2^{-2}d1^{-1}. These neutrons that are produced by nuclear fission inside the reactor core, are reduced by a factor of \sim1020^{20} on their way to the CONUS shield. With a high-purity Ge detector without shield the γ\gamma-ray background was examined including highly thermal power correlated 16^{16}N decay products as well as γ\gamma-lines from neutron capture. Using the measured neutron spectrum as input, it was shown, with the help of Monte Carlo simulations, that the thermal power correlated field is successfully mitigated by the installed CONUS shield. The reactor-induced background contribution in the region of interest is exceeded by the expected signal by at least one order of magnitude assuming a realistic ionization quenching factor of 0.2.Comment: 28 pages, 28 figure
    corecore