36 research outputs found

    Measuring Cosmic Rays with the RadMap Telescope on the International Space Station

    Get PDF
    The RadMap Telescope is a new radiation-monitoring instrument operating in the U.S. Orbital Segment (USOS) of the International Space Station (ISS). The instrument was commissioned in May 2023 and will rotate through four locations inside American, European, and Japanese modules over a period of about six months. In some locations, it will take data alongside operational, validated detectors for a cross-check of measurements. RadMap’s central detector is a finely segmented tracking calorimeter that records detailed depth-dose data relevant to studies of the radiation exposure of the ISS crew. It is also able to record particle-dependent energy spectra of cosmic-ray nuclei with energies up to several hundred MeV per nucleon. A unique feature of the detector is its ability to track nuclei with omnidirectional sensitivity at an angular resolution of two degrees. In this contribution, we present the design and capabilities of the RadMap Telescope and give an overview of the instrument’s commissioning on the ISS

    Light Perception in Two Strictly Subterranean Rodents: Life in the Dark or Blue?

    Get PDF
    BACKGROUND: The African mole-rats (Bathyergidae, Rodentia) are strictly subterranean, congenitally microphthalmic rodents that are hardly ever exposed to environmental light. Because of the lack of an overt behavioural reaction to light, they have long been considered to be blind. However, recent anatomical studies have suggested retention of basic visual capabilities. In this study, we employed behavioural tests to find out if two mole-rat species are able to discriminate between light and dark, if they are able to discriminate colours and, finally, if the presence of light in burrows provokes plugging behaviour, which is assumed to have a primarily anti-predatory function. METHODOLOGY/PRINCIPAL FINDING: We used a binary choice test to show that the silvery mole-rat Heliophobius argenteocinereus and the giant mole-rat Fukomys mechowii exhibit a clear photoavoidance response to full-spectrum ("white"), blue and green-yellow light, but no significant reaction to ultraviolet or red light during nest building. The mole-rats thus retain dark/light discrimination capabilities and a capacity to perceive short to medium-wavelength light in the photopic range of intensities. These findings further suggest that the mole-rat S opsin has its absorption maximum in the violet/blue part of the spectrum. The assay did not yield conclusive evidence regarding colour discrimination. To test the putative role of vision in bathyergid anti-predatory behaviour, we examined the reaction of mole-rats to the incidence of light in an artificial burrow system. The presence of light in the burrow effectively induced plugging of the illuminated tunnel. CONCLUSION/SIGNIFICANCE: Our findings suggest that the photopic vision is conserved and that low acuity residual vision plays an important role in predator avoidance and tunnel maintenance in the African mole-rats

    Perceived economic self‑sufficiency: a countryand generation‑comparative approach

    Get PDF
    We thank Michael Camasso and Radha Jagannathan as well as Asimina Christoforou, Gerbert Kraaykamp, Fay Makantasi, Tiziana Nazio, Kyriakos Pierrakakis, Jacqueline O’Reilly and Jan van Deth for their contribution to the CUPESSE project (Seventh Framework Programme; Grant Agreement No. 61325). CUPESSE received additional funding from the Mannheim Centre for European Social Research (MZES) and the Field of Focus 4 “Self-Regulation and Regulation: Individuals and Organisations” at Heidelberg University. We further acknowledge helpful comments on this article by two anonymous reviewers. Julian Rossello provided valuable research assistance.Electronic supplementary material The online version of this article (https ://doi.org/10.1057/ s4130 4-018-0186-3) contains supplementary material, which is available to authorized users.Existing datasets provided by statistical agencies (e.g. Eurostat) show that the economic and financial crisis that unfolded in 2008 significantly impacted the lives and livelihoods of young people across Europe. Taking these official statistics as a starting point, the collaborative research project “Cultural Pathways to Economic Self-Sufficiency and Entrepreneurship in Europe” (CUPESSE) generated new survey data on the economic and social situation of young Europeans (18–35 years). The CUPESSE dataset allows for country-comparative assessments of young people’s perceptions about their socio-economic situation. Furthermore, the dataset includes a variety of indicators examining the socio-economic situation of both young adults and their parents. In this data article, we introduce the CUPESSE dataset to political and social scientists in an attempt to spark a debate on the measurements, patterns and mechanisms of intergenerational transmission of economic self-sufficiency as well as its political implications.CUPESSE project (Seventh Framework Programme; Grant Agreement No. 61325

    Dominant Cone-Rod Dystrophy: A Mouse Model Generated by Gene Targeting of the GCAP1/Guca1a Gene

    Get PDF
    Cone dystrophy 3 (COD3) is a severe dominantly inherited retinal degeneration caused by missense mutations in GUCA1A, the gene encoding Guanylate Cyclase Activating Protein 1 (GCAP1). The role of GCAP1 in controlling cyclic nucleotide levels in photoreceptors has largely been elucidated using knock-out mice, but the disease pathology in these mice cannot be extrapolated directly to COD3 as this involves altered, rather than loss of, GCAP1 function. Therefore, in order to evaluate the pathology of this dominant disorder, we have introduced a point mutation into the murine Guca1a gene that causes an E155G amino acid substitution; this is one of the disease-causing mutations found in COD3 patients. Disease progression in this novel mouse model of cone dystrophy was determined by a variety of techniques including electroretinography (ERG), retinal histology, immunohistochemistry and measurement of cGMP levels. It was established that although retinal development was normal up to 3 months of age, there was a subsequent progressive decline in retinal function, with a far greater alteration in cone than rod responses, associated with a corresponding loss of photoreceptors. In addition, we have demonstrated that accumulation of cyclic GMP precedes the observed retinal degeneration and is likely to contribute to the disease mechanism. Importantly, this knock-in mutant mouse has many features in common with the human disease, thereby making it an excellent model to further probe disease pathogenesis and investigate therapeutic interventions
    corecore