136 research outputs found
Collaborative mechanisms for big data analytics projects: Building bridges over troubled waters
Big data analytics (BDA) is accepted to be an important driver of business value. Deriving value from big data to improve organizational decision-making requires the collaboration of data science experts and business users. However, recent literature has shown that their relationship is troubled. Tension arises from diverse relational difficulties and change-inherent challenges. The relationship has been theorized to lack social capital, which leads to inferior collaboration and diminishes project success. In this vein, scholars have begun to investigate relational governance mechanisms, but detailed insights on collaborative approaches to foster the relationship remain scarce. By applying multiple-case research, we shed light on collaborative mechanisms and reveal their impact on the relationship between data science and business employees, theorized by means of social capital. Thus, we build theoretical and practical bridges over the troubled waters in BDA collaboration and contribute to BDA success from a social perspective
E2f4 and E2f5 are essential for the development of the male reproductive system
The E2F transcription factors are primarily implicated in the regulation of entry and exit from the cell cycle. However, in vivo studies have established additional roles for E2Fs during organ development and homeostasis. With the goal of addressing the intestinal requirements of E2f4 and E2f5, we crossed mice carrying Vil-cre, E2f4 conditional and E2f5 germline alleles. E2f4 deletion had no detectable effect on intestinal development. However, E2f4f/f;E2f5+/−;Vil-cre males, but not E2f4f/f;Vil-cre littermates, were unexpectedly sterile. This defect was not due to defective spermatogenesis. Instead, the seminiferous tubules and rete testes showed significant dilation, and spermatozoa accumulated aberrantly in the rete testis and efferent ducts. Our data show that these problems result from defective efferent ducts, a tissue whose primary function is to concentrate sperm through fluid absorption. First, Vil-cre expression, and consequent E2F4 loss, was specific to the efferent ducts and not other reproductive tract tissues. Second, the E2f4f/f;E2f5+/−;Vil-cre efferent ducts had completely lost multiciliated cells and greatly reduced levels of critical absorptive cell proteins: aquaporin1, a water channel protein, and clusterin, an endocytic marker. Collectively, the observed testis phenotypes suggest a fluid flux defect. Remarkably, we observed rete testis dilation prior to the normal time of seminiferous fluid production, arguing that the efferent duct defects promote excessive secretory activity within the reproductive tract. Finally, we also detect key aspects of these testis defects in E2f5−/− mice. Thus, we conclude that E2f4 and E2f5 display overlapping roles in controlling the normal development of the male reproductive system.National Institutes of Health (U.S.) (Grant NIH-P01 CA42063
Chancen von Social Entrepreneurship Education in der Grundschule
Chancen von Social Entrepreneurship in der Grundschule - Seminarkonzept + Evaluatio
Oxidation of p53 through DNA Charge Transport Involves a Network of Disulfides within the DNA-Binding Domain
Transcription factor p53 plays a critical role in the cellular response to stress stimuli. We have seen that p53 dissociates selectively from various promoter sites as a result of oxidation at long-range through DNA-mediated charge transport (CT). Here, we examine this chemical oxidation and determine the residues in p53 that are essential for oxidative dissociation, focusing on the network of cysteine residues adjacent to the DNA-binding site. Of the eight mutants studied, only the C275S mutation shows decreased affinity for the Gadd45 promoter site. However, both mutations C275S and C277S result in substantial attenuation of oxidative dissociation, with C275S causing the most severe attenuation. Differential thiol labeling was used to determine the oxidation states of cysteine residues within p53 after DNA-mediated oxidation. Reduced cysteines were iodoacetamide-labeled, whereas oxidized cysteines participating in disulfide bonds were ^(13)C_2D_2-iodoacetamide-labeled. Intensities of respective iodoacetamide-modified peptide fragments were analyzed by mass spectrometry. A distinct shift in peptide labeling toward ^(13)C_2D_2-iodoacetamide-labeled cysteines is observed in oxidized samples, confirming that chemical oxidation of p53 occurs at long range. All observable cysteine residues trend toward the heavy label under conditions of DNA CT, indicating the formation of multiple disulfide bonds among the cysteine network. On the basis of these data, it is proposed that disulfide formation involving C275 is critical for inducing oxidative dissociation of p53 from DNA
Pt/SnO2-based CO-oxidation catalysts for long-life closed-cycle CO2 lasers
Noble-metal/tin-oxide based catalysts such as Pt/SnO2 have been shown to be good catalysts for the efficient oxidation of CO at or near room temperature. These catalysts require a reductive pretreatment and traces of hydrogen or water to exhibit their full activity. Addition of Palladium enhances the activity of these catalysts with about 15 to 20 percent Pt, 4 percent Pd, and the balance SnO2 being an optimum composition. Unfortunately, these catalysts presently exhibit significant decay due in part to CO2 retention, probably as a bicarbonate. Research on minimizing the decay in activity of these catalysts is currently in progress. A proposed mechanism of CO oxidation on Pt/SnO2-based catalysts has been developed and is discussed
2010 Portrait of Women & Girls in the Washington Metropolitan Area
In the DC metro area there are nearly 180,000 women and girls living in poverty. They're living alongside some of the wealthiest, most powerful women in the world. Washington Area Women's Foundation believes that their future is our future. When women and girls thrive, whole communities and regions thrive, too. This report's findings demonstrate both the opportunities and challenges we face in working to achieve this goal
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
- …