9 research outputs found

    IGFBP3 Colocalizes with and Regulates Hypocretin (Orexin)

    Get PDF
    Background: The sleep disorder narcolepsy is caused by a vast reduction in neurons producing the hypocretin (orexin) neuropeptides. Based on the tight association with HLA, narcolepsy is believed to result from an autoimmune attack, but the cause of hypocretin cell loss is still unknown. We performed gene expression profiling in the hypothalamus to identify novel genes dysregulated in narcolepsy, as these may be the target of autoimmune attack or modulate hypocretin gene expression. Methodology/Principal Findings: We used microarrays to compare the transcriptome in the posterior hypothalamus of (1) narcoleptic versus control postmortem human brains and (2) transgenic mice lacking hypocretin neurons versus wild type mice. Hypocretin was the most downregulated gene in human narcolepsy brains. Among many additional candidates, only one, insulin-like growth factor binding protein 3 (IGFBP3), was downregulated in both human and mouse models and coexpressed in hypocretin neurons. Functional analysis indicated decreased hypocretin messenger RNA and peptide content, and increased sleep in transgenic mice overexpressing human IGFBP3, an effect possibly mediated through decrease

    Common variants in P2RY11 are associated with narcolepsy.

    Get PDF
    Growing evidence supports the hypothesis that narcolepsy with cataplexy is an autoimmune disease. We here report genome-wide association analyses for narcolepsy with replication and fine mapping across three ethnic groups (3,406 individuals of European ancestry, 2,414 Asians and 302 African Americans). We identify a SNP in the 3' untranslated region of P2RY11, the purinergic receptor subtype P2Y₁₁ gene, which is associated with narcolepsy (rs2305795, combined P = 6.1 × 10⁻¹⁰, odds ratio = 1.28, 95% CI 1.19-1.39, n = 5689). The disease-associated allele is correlated with reduced expression of P2RY11 in CD8(+) T lymphocytes (339% reduced, P = 0.003) and natural killer (NK) cells (P = 0.031), but not in other peripheral blood mononuclear cell types. The low expression variant is also associated with reduced P2RY11-mediated resistance to ATP-induced cell death in T lymphocytes (P = 0.0007) and natural killer cells (P = 0.001). These results identify P2RY11 as an important regulator of immune-cell survival, with possible implications in narcolepsy and other autoimmune diseases.journal articleresearch support, n.i.h., extramuralresearch support, non-u.s. gov'tresearch support, u.s. gov't, p.h.s.2011 Jan2010 12 19importedErratum in : Nat Genet. 2011 Oct;43(10):1040

    Narcolepsy risk loci outline role of T cell autoimmunity and infectious triggers in narcolepsy

    Get PDF
    Narcolepsy has genetic and environmental risk factors, but the specific genetic risk loci and interaction with environmental triggers are not well understood. Here, the authors identify genetic loci for narcolepsy, suggesting infection as a trigger and dendritic and helper T cell involvement.Narcolepsy type 1 (NT1) is caused by a loss of hypocretin/orexin transmission. Risk factors include pandemic 2009 H1N1 influenza A infection and immunization with Pandemrix (R). Here, we dissect disease mechanisms and interactions with environmental triggers in a multi-ethnic sample of 6,073 cases and 84,856 controls. We fine-mapped GWAS signals within HLA (DQ0602, DQB1*03:01 and DPB1*04:02) and discovered seven novel associations (CD207, NAB1, IKZF4-ERBB3, CTSC, DENND1B, SIRPG, PRF1). Significant signals at TRA and DQB1*06:02 loci were found in 245 vaccination-related cases, who also shared polygenic risk. T cell receptor associations in NT1 modulated TRAJ*24, TRAJ*28 and TRBV*4-2 chain-usage. Partitioned heritability and immune cell enrichment analyses found genetic signals to be driven by dendritic and helper T cells. Lastly comorbidity analysis using data from FinnGen, suggests shared effects between NT1 and other autoimmune diseases. NT1 genetic variants shape autoimmunity and response to environmental triggers, including influenza A infection and immunization with Pandemrix (R).Peer reviewe

    Common variants in P2RY11 are associated with narcolepsy

    Get PDF
    Growing evidence supports the hypothesis that narcolepsy with cataplexy is an autoimmune disease. Using genome-wide association (GWA) in narcolepsy patients versus controls, with replication and fine mapping across three ethnic groups (3406 individuals of European ancestry, 2414 Asians, and 302 African Americans), we found a novel association between SNP rs2305795 in the 3′UTR of the purinergic receptor subtype 2Y(11) (P2RY11) gene and narcolepsy (p(Mantel Haenszel)=6.1×10(-10); odds ratio 1.28; n=5689). The disease-associated allele is correlated with a 3-fold lower expression of P2RY11 in CD8(+) T lymphocytes (p=0.003) and natural killer (NK) cells (p=0.031) but not in other peripheral blood mononuclear cell (PBMC) types. The low expression variant is also associated with decreased P2RY11 mediated resistance to adenosine triphosphate (ATP) induced cell death in T lymphocytes (p=0.0007) and NK cells (p=0.001). These results identify P2RY11 as an important regulator of immune cell survival, with possible implications in narcolepsy and other autoimmune diseases
    corecore