553 research outputs found

    Magnetization precession due to a spin polarized current in a thin nanoelement: numerical simulation study

    Full text link
    In this paper a detailed numerical study (in frames of the Slonczewski formalism) of magnetization oscillations driven by a spin-polarized current through a thin elliptical nanoelement is presented. We show that a sophisticated micromagnetic model, where a polycrystalline structure of a nanoelement is taken into account, can explain qualitatively all most important features of the magnetization oscillation spectra recently observed experimentally (S.I. Kiselev et al., Nature, vol. 425, p. 380 (2003), namely: existence of several equidistant spectral bands, sharp onset and abrupt disappearance of magnetization oscillations with increasing current, absence of the out-of-plane regime predicted by a macrospin model and the relation between frequencies of so called small-angle and quasichaotic oscillations. However, a quantitative agreement with experimental results (especially concerning the frequency of quasichaotic oscillations) could not be achieved in the region of reasonable parameter values, indicating that further model refinement is necessary for a complete understanding of the spin-driven magnetization precession even in this relatively simple experimental situation.Comment: Submitted to Phys. Rev. B; In this revised version figure positions on the page have been changed to ensure correct placements of the figure caption

    Structure peculiarities of cementite and their influence on the magnetic characteristics

    Full text link
    The iron carbide Fe3CFe_3C is studied by the first-principle density functional theory. It is shown that the crystal structure with the carbon disposition in a prismatic environment has the lowest total energy and the highest energy of magnetic anisotropy as compared to the structure with carbon in an octahedron environment. This fact explains the behavior of the coercive force upon annealing of the plastically deformed samples. The appearance of carbon atoms in the octahedron environment can be revealed by Mossbauer experiment.Comment: 10 pages, 3 figures, 3 tables. submitted to Phys.Rev.

    Effect of the hard magnetic inclusion on the macroscopic anisotropy of nanocrystalline magnetic-materials

    Get PDF
    It is shown that the presence of highly anisotropic magnetic precipitates in a soft multiphased matrix can produce a remarkable hardening, even when the volume fraction of the precipitates is small. The exchange coupling between the matrix and the precipitates is the relevant parameter. In particular, the simplified analysis we develop in this paper accounts for the magnetic hardening observed in very soft Fe-rich nanocrystals after annealing at higher temperatures

    Size effects in the magnetic behaviour of TbAl_2 milled alloys

    Full text link
    The study of the magnetic properties depending upon mechanical milling of the ferromagnetic polycrystalline TbAl_2 material is reported. The Rietveld analysis of the X-ray diffraction data reveals a decrease of the grain size down to 14 nm and -0.15 % of variation of the lattice parameter, after 300 hours of milling time. Irreversibility in the zero field cooled - field cooled (ZFC-FC) DC-susceptibility and clear peaks in the AC susceptibility between 5 and 300 K show that the long-range ferromagnetic structure is inhibited in favour of a disordered spin arrangement below 45 K. This glassy behaviour is also deduced from the variation of the irreversibility transition with the field (H^{2/3}) and frequency. The magnetization process of the bulk TbAl_2 is governed by domain wall thermal activation processes. By contrast, in the milled samples, cluster-glass properties arise as a result of cooperative interactions due to the substitutional disorder. The interactions are also influenced by the nanograin structure of the milled alloys, showing a variation of coercivity with the grain size, below the crossover between the multi- and single-domain behaviours.Comment: 23 pages, 11 figures, to appear in J. Phys.: Condens. Ma

    Projective Ring Line of a Specific Qudit

    Full text link
    A very particular connection between the commutation relations of the elements of the generalized Pauli group of a dd-dimensional qudit, dd being a product of distinct primes, and the structure of the projective line over the (modular) ring \bZ_{d} is established, where the integer exponents of the generating shift (XX) and clock (ZZ) operators are associated with submodules of \bZ^{2}_{d}. Under this correspondence, the set of operators commuting with a given one -- a perp-set -- represents a \bZ_{d}-submodule of \bZ^{2}_{d}. A crucial novel feature here is that the operators are also represented by {\it non}-admissible pairs of \bZ^{2}_{d}. This additional degree of freedom makes it possible to view any perp-set as a {\it set-theoretic} union of the corresponding points of the associated projective line

    Projective Ring Line Encompassing Two-Qubits

    Full text link
    The projective line over the (non-commutative) ring of two-by-two matrices with coefficients in GF(2) is found to fully accommodate the algebra of 15 operators - generalized Pauli matrices - characterizing two-qubit systems. The relevant sub-configuration consists of 15 points each of which is either simultaneously distant or simultaneously neighbor to (any) two given distant points of the line. The operators can be identified with the points in such a one-to-one manner that their commutation relations are exactly reproduced by the underlying geometry of the points, with the ring geometrical notions of neighbor/distant answering, respectively, to the operational ones of commuting/non-commuting. This remarkable configuration can be viewed in two principally different ways accounting, respectively, for the basic 9+6 and 10+5 factorizations of the algebra of the observables. First, as a disjoint union of the projective line over GF(2) x GF(2) (the "Mermin" part) and two lines over GF(4) passing through the two selected points, the latter omitted. Second, as the generalized quadrangle of order two, with its ovoids and/or spreads standing for (maximum) sets of five mutually non-commuting operators and/or groups of five maximally commuting subsets of three operators each. These findings open up rather unexpected vistas for an algebraic geometrical modelling of finite-dimensional quantum systems and give their numerous applications a wholly new perspective.Comment: 8 pages, three tables; Version 2 - a few typos and one discrepancy corrected; Version 3: substantial extension of the paper - two-qubits are generalized quadrangles of order two; Version 4: self-dual picture completed; Version 5: intriguing triality found -- three kinds of geometric hyperplanes within GQ and three distinguished subsets of Pauli operator

    Observation of energetic terahertz pulses from relativistic solid density plasmas

    Get PDF
    We report the first experimental observation of terahertz (THz) radiation from the rear surface of a solid target while interacting with an intense laser pulse. Experimental and two-dimensional particle-in-cell simulations show that the observed THz radiation is mostly emitted at large angles to the target normal. Numerical results point out that a large part of the emission originates from a micron-scale plasma sheath at the rear surface of the target, which is also responsible for the ion acceleration. This opens a perspective for the application of THz radiation detection for on-site diagnostics of particle acceleration in laser-produced plasmas

    Reduction of the Yb valence in YbAl3 nanoparticles

    Get PDF
    Measurements of specific heat, dc magnetic susceptibility, and Yb LII and LIII x-ray absorption near-edge structure XANES and extended x-ray absorption fine structure EXAFS on YbAl3 milled alloys are reported. X-ray diffraction patterns are consistent with a reduction in particle size down to 10 nm and an increase in the lattice strain up to 0.4% for 120 h of milling time. A decrease in the mean valence from 2.86 for the unmilled alloy to 2.70 for 120 h milled YbAl3 is obtained from the analysis of XANES spectra. From the analysis of spectra in the EXAFS region, an increase in the mean-square disorder of neighbor distance with milling time is detected in good agreement with the results of x-ray diffraction. Size effects strongly influence the magnetic and thermal properties. The value for the maximum of the magnetic susceptibility decreases around 30% for 120 h milled alloy and an excess specific heat, with a peak around 40 K in the milled samples, is derived. These changes in the physical properties along the milled YbAl3 alloys are associated with the reduction in particle size. Such a reduction leads to the existence of a large number of Yb2+ atoms at the surface with respect to the bulk affecting the overall electronic state
    • …
    corecore