42 research outputs found

    Gamma-induced background in the KATRIN main spectrometer

    Get PDF
    International audienceThe KArlsruhe TRItium Neutrino (KATRIN) experiment aims to make a model-independent determination of the effective electron antineutrino mass with a sensitivity of 0.2 eV/c 2 . It investigates the kinematics of ÎČ -particles from tritium ÎČ -decay close to the endpoint of the energy spectrum. Because the KATRIN main spectrometer (MS) is located above ground, muon-induced backgrounds are of particular concern. Coincidence measurements with the MS and a scintillator-based muon detector system confirmed the model of secondary electron production by cosmic-ray muons inside the MS. Correlation measurements with the same setup showed that about 12% of secondary electrons emitted from the inner surface are induced by cosmic-ray muons, with approximately one secondary electron produced for every 17 muon crossings. However, the magnetic and electrostatic shielding of the MS is able to efficiently suppress these electrons, and we find that muons are responsible for less than 17% (90% confidence level) of the overall MS background

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    The reelin receptor ApoER2 recruits JNK-interacting proteins-1 and -2

    No full text
    Correct positioning of neurons during embryonic development of the brain depends, among other processes, on the proper transmission of the reelin signal into the migrating cells via the interplay of its receptors with cytoplasmic signal transducers. Cellular components of this signaling pathway characterized to date are cell surface receptors for reelin like apolipoprotein E receptor 2 (ApoER2), very low density lipoprotein receptor (VLDLR), and cadherin-related neuronal receptors, and intracellular components like Disabled-1 and the nonreceptor tyrosine kinase Fyn, which bind to the intracellular domains of the ApoER2 and VLDL receptor or of cadherin-related neuronal receptors, respectively. Here we show that ApoER2, but not VLDLR, also binds the family of JNK-interacting proteins (JIPs), which act as molecular scaffolds for the JNK-signaling pathway. The ApoER2 binding domain on JIP-2 does not overlap with the binding sites for MLK3, MKK7, and JNK. These results suggest that ApoER2 is able to assemble a multiprotein complex containing Disabled-1 and JIPs, together with their binding partners, to the cell surface of neurons. This complex might participate in ApoER2-specific reelin signaling and thus would explain the different phenotype of mice lacking the ApoER2 from that of VLDLR-deficient mice

    The role of chemical composition in determining the charge-carrier dynamics in (AgI)x(BiI3)yrudorffites

    No full text
    Silver-bismuth-based perovskite-inspired materials (PIMs) are increasingly being explored as non-toxic materials in photovoltaic applications. However, many of these materials exhibit an ultrafast localization of photogenerated charge carriers that is detrimental for charge-carrier extraction. In this work, such localization processes are explored for thermally evaporated thin films of compositions lying along the (AgI)x(BiI3)y series, namely BiI3, AgBi2I7, AgBiI4, Ag2BiI5, Ag3BiI6, and AgI, to investigate the impact of changing Ag+/Bi3+ content. A persistent presence of ultrafast charge-carrier localization in all mixed compositions and BiI3, together with unusually broad photoluminescence spectra, reveal that eliminating silver will not suppress the emergence of a localized state. A weak change in electronic bandgap and charge-carrier mobility reveals the resilience of the electronic band structure upon modifications in the Ag+/Bi3+ composition of the mixed-metal rudorffites. Instead, chemical composition impacts the charge-carrier dynamics indirectly via structural alterations: Ag-deficient compositions demonstrate stronger charge-carrier localization most likely because a higher density of vacant sites in the cationic sublattice imparts enhanced lattice softness. Unraveling such delicate interplay between chemical composition, crystal structure, and charge-carrier dynamics in (AgI)x(BiI3)y rudorffites provides crucial insights for developing a material-by-design approach in the quest for highly efficient Bi-based PIMs.</p

    Proteasome Regulates the Delivery of LDL Receptor-related Protein into the Degradation Pathway

    Get PDF
    The low-density lipoprotein receptor (LDLR)-related protein (LRP) is a multiligand endocytic receptor that has broad cellular and physiological functions. Previous studies have shown that both tyrosine-based and di-leucine motifs within the LRP cytoplasmic tail are responsible for mediating its rapid endocytosis. Little is known, however, about the mechanism by which LRP is targeted for degradation. By examining both endogenous full-length and a minireceptor form of LRP, we found that proteasomal inhibitors, MG132 and lactacystin, prolong the cellular half-life of LRP. The presence of proteasomal inhibitors also significantly increased the level of LRP at the cell surface, suggesting that the delivery of LRP to the degradation pathway was blocked at a compartment from which recycling of the receptor to the cell surface still occurred. Immunoelectron microscopy analyses demonstrated a proteasomal inhibitor-dependent reduction in LRP minireceptor within both limiting membrane and internal vesicles of the multivesicular bodies, which are compartments that lead to receptor degradation. In contrast to the growth hormone receptor, we found that the initial endocytosis of LRP minireceptor does not require a functional ubiquitin–proteasome system. Finally, using truncated cytoplasmic mutants of LRP minireceptors, we found that a region of 19 amino acids within the LRP tail is required for proteasomal regulation. Taken together our results provide strong evidence that the cellular turnover of a cargo receptor, i.e., LRP, is regulated by the proteasomal system, suggesting a broader function of the proteasome in regulating the trafficking of receptors into the degradation pathway
    corecore