65 research outputs found

    A Monte Carlo study of the three-dimensional Coulomb frustrated Ising ferromagnet

    Full text link
    We have investigated by Monte-Carlo simulation the phase diagram of a three-dimensional Ising model with nearest-neighbor ferromagnetic interactions and small, but long-range (Coulombic) antiferromagnetic interactions. We have developed an efficient cluster algorithm and used different lattice sizes and geometries, which allows us to obtain the main characteristics of the temperature-frustration phase diagram. Our finite-size scaling analysis confirms that the melting of the lamellar phases into the paramgnetic phase is driven first-order by the fluctuations. Transitions between ordered phases with different modulation patterns is observed in some regions of the diagram, in agreement with a recent mean-field analysis.Comment: 14 pages, 10 figures, submitted to Phys. Rev.

    GOBLET: the Global Organisation for Bioinformatics Learning, Education and Training

    Get PDF
    In recent years, high-throughput technologies have brought big data to the life sciences. The march of progress has been rapid, leaving in its wake a demand for courses in data analysis, data stewardship, computing fundamentals, etc., a need that universities have not yet been able to satisfy--paradoxically, many are actually closing "niche" bioinformatics courses at a time of critical need. The impact of this is being felt across continents, as many students and early-stage researchers are being left without appropriate skills to manage, analyse, and interpret their data with confidence. This situation has galvanised a group of scientists to address the problems on an international scale. For the first time, bioinformatics educators and trainers across the globe have come together to address common needs, rising above institutional and international boundaries to cooperate in sharing bioinformatics training expertise, experience, and resources, aiming to put ad hoc training practices on a more professional footing for the benefit of all

    GOBLET: The Global Organisation for Bioinformatics Learning, Education and Training

    Get PDF
    In recent years, high-throughput technologies have brought big data to the life sciences. The march of progress has been rapid, leaving in its wake a demand for courses in data analysis, data stewardship, computing fundamentals, etc., a need that universities have not yet been able to satisfy—paradoxically, many are actually closing “niche” bioinformatics courses at a time of critical need. The impact of this is being felt across continents, as many students and early-stage researchers are being left without appropriate skills to manage, analyse, and interpret their data with confidence. This situation has galvanised a group of scientists to address the problems on an international scale. For the first time, bioinformatics educators and trainers across the globe have come together to address common needs, rising above institutional and international boundaries to cooperate in sharing bioinformatics training expertise, experience, and resources, aiming to put ad hoc training practices on a more professional footing for the benefit of all

    Smaller total and subregional cerebellar volumes in posttraumatic stress disorder:a mega-analysis by the ENIGMA-PGC PTSD workgroup

    Get PDF
    Although the cerebellum contributes to higher-order cognitive and emotional functions relevant to posttraumatic stress disorder (PTSD), prior research on cerebellar volume in PTSD is scant, particularly when considering subregions that differentially map on to motor, cognitive, and affective functions. In a sample of 4215 adults (PTSD n = 1642; Control n = 2573) across 40 sites from the ENIGMA-PGC PTSD working group, we employed a new state-of-the-art deep-learning based approach for automatic cerebellar parcellation to obtain volumetric estimates for the total cerebellum and 28 subregions. Linear mixed effects models controlling for age, gender, intracranial volume, and site were used to compare cerebellum volumes in PTSD compared to healthy controls (88% trauma-exposed). PTSD was associated with significant grey and white matter reductions of the cerebellum. Compared to controls, people with PTSD demonstrated smaller total cerebellum volume, as well as reduced volume in subregions primarily within the posterior lobe (lobule VIIB, crus II), vermis (VI, VIII), flocculonodular lobe (lobule X), and corpus medullare (all p -FDR &lt; 0.05). Effects of PTSD on volume were consistent, and generally more robust, when examining symptom severity rather than diagnostic status. These findings implicate regionally specific cerebellar volumetric differences in the pathophysiology of PTSD. The cerebellum appears to play an important role in higher-order cognitive and emotional processes, far beyond its historical association with vestibulomotor function. Further examination of the cerebellum in trauma-related psychopathology will help to clarify how cerebellar structure and function may disrupt cognitive and affective processes at the center of translational models for PTSD.</p

    Smaller total and subregional cerebellar volumes in posttraumatic stress disorder:a mega-analysis by the ENIGMA-PGC PTSD workgroup

    Get PDF
    Although the cerebellum contributes to higher-order cognitive and emotional functions relevant to posttraumatic stress disorder (PTSD), prior research on cerebellar volume in PTSD is scant, particularly when considering subregions that differentially map on to motor, cognitive, and affective functions. In a sample of 4215 adults (PTSD n = 1642; Control n = 2573) across 40 sites from the ENIGMA-PGC PTSD working group, we employed a new state-of-the-art deep-learning based approach for automatic cerebellar parcellation to obtain volumetric estimates for the total cerebellum and 28 subregions. Linear mixed effects models controlling for age, gender, intracranial volume, and site were used to compare cerebellum volumes in PTSD compared to healthy controls (88% trauma-exposed). PTSD was associated with significant grey and white matter reductions of the cerebellum. Compared to controls, people with PTSD demonstrated smaller total cerebellum volume, as well as reduced volume in subregions primarily within the posterior lobe (lobule VIIB, crus II), vermis (VI, VIII), flocculonodular lobe (lobule X), and corpus medullare (all p -FDR &lt; 0.05). Effects of PTSD on volume were consistent, and generally more robust, when examining symptom severity rather than diagnostic status. These findings implicate regionally specific cerebellar volumetric differences in the pathophysiology of PTSD. The cerebellum appears to play an important role in higher-order cognitive and emotional processes, far beyond its historical association with vestibulomotor function. Further examination of the cerebellum in trauma-related psychopathology will help to clarify how cerebellar structure and function may disrupt cognitive and affective processes at the center of translational models for PTSD.</p

    Neuroimaging-based classification of PTSD using data-driven computational approaches: a multisite big data study from the ENIGMA-PGC PTSD consortium

    Get PDF
    Background: Recent advances in data-driven computational approaches have been helpful in devising tools to objectively diagnose psychiatric disorders. However, current machine learning studies limited to small homogeneous samples, different methodologies, and different imaging collection protocols, limit the ability to directly compare and generalize their results. Here we aimed to classify individuals with PTSD versus controls and assess the generalizability using a large heterogeneous brain datasets from the ENIGMA-PGC PTSD Working group. Methods: We analyzed brain MRI data from 3,477 structural-MRI; 2,495 resting state-fMRI; and 1,952 diffusion-MRI. First, we identified the brain features that best distinguish individuals with PTSD from controls using traditional machine learning methods. Second, we assessed the utility of the denoising variational autoencoder (DVAE) and evaluated its classification performance. Third, we assessed the generalizability and reproducibility of both models using leave-one-site-out cross-validation procedure for each modality. Results: We found lower performance in classifying PTSD vs. controls with data from over 20 sites (60 % test AUC for s-MRI, 59 % for rs-fMRI and 56 % for D-MRI), as compared to other studies run on single-site data. The performance increased when classifying PTSD from HC without trauma history in each modality (75 % AUC). The classification performance remained intact when applying the DVAE framework, which reduced the number of features. Finally, we found that the DVAE framework achieved better generalization to unseen datasets compared with the traditional machine learning frameworks, albeit performance was slightly above chance. Conclusion: These results have the potential to provide a baseline classification performance for PTSD when using large scale neuroimaging datasets. Our findings show that the control group used can heavily affect classification performance. The DVAE framework provided better generalizability for the multi-site data. This may be more significant in clinical practice since the neuroimaging-based diagnostic DVAE classification models are much less site-specific, rendering them more generalizable.Stress-related psychiatric disorders across the life spa

    Childhood and adult trauma both correlate with dorsal anterior cingulate activation to threat in combat veterans

    No full text
    Background Prior studies of adult post-traumatic stress disorder (PTSD) suggest abnormal functioning of prefrontal and limbic regions. Cumulative childhood and adult trauma exposures are major risk factors for developing adult PTSD, yet their contribution to neural dysfunction in PTSD remains poorly understood. This study aimed to examine the neural correlates of childhood and adult trauma exposure and post-traumatic stress symptoms (PTSS) within a single model. Method Medication-free male combat veterans (n = 28, average age 26.6 years) with a wide range of PTSS were recruited from the community between 2010 and 2011. Subjects completed an emotional face-morphing task while undergoing functional magnetic resonance imaging (fMRI). Clinical ratings included the Clinician-Administered PTSD Scale (CAPS), Childhood Trauma Questionnaire (CTQ) and Combat Exposure Scale (CES). A priori regions were examined through multivariate voxelwise regression in SPM8, using depressive symptoms and IQ as covariates. Results In the angry condition, CAPS scores correlated positively with activation in the medial prefrontal cortex [mPFC; Brodmann area (BA) 10, z = 3.51], hippocampus (z = 3.47), insula (z = 3.62) and, in earlier blocks, the amygdala. CES and CTQ correlated positively with activation in adjacent areas of the dorsal anterior cingulate cortex (dACC; BA 32, z = 3.70 and BA 24, z = 3.88 respectively). In the happy condition, CAPS, CTQ and CES were not correlated significantly with activation patterns. Conclusions dACC activation observed in prior studies of PTSD may be attributable to the cumulative effects of childhood and adult trauma exposure. By contrast, insula, hippocampus and amygdala activation may be specific to PTSS. The specificity of these results to threat stimuli, but not to positive stimuli, is consistent with abnormalities in threat processing associated with PTSS

    A proof-of-concept study of vicarious extinction learning and autonomic synchrony in parent–child dyads and posttraumatic stress disorder

    No full text
    Abstract Though threat-extinction models continue to inform scientific study of traumatic stress, knowledge of learning and extinction as mechanisms linking exposure to psychopathology remains critically limited among youth. This proof-of-concept study advances the study of threat-extinction in youth by determining feasibility of electrodermal stimulation (EDS), vicarious extinction learning via their parent, and social threat learning in pediatric PTSD (pPTSD). Typically developing (TD) and PTSD-diagnosed youth in 45 mother–child dyads completed an extinction learning paradigm. The use of EDS was first investigated in a cohort of TD youth (n = 20) using a 2-day paradigm without vicarious extinction, while direct (for TD and pPTSD) and vicarious (for pPTSD) extinction were investigated in a 3-day paradigm (n = 25). Threat acquisition and extinction were monitored using skin-conductance response (SCR) and behavioral expectations of EDS. Using Bayesian modeling to accommodate this pilot sample, our results demonstrate: (1) EDS-conditioning to be highly feasible and well-tolerated across TD and trauma-exposed youth, (2) Successful direct and vicarious extinction learning in trauma-exposed youth, and (3) PTSD-associated patterns in extinction learning and physiological synchrony between parent–child dyads. In summary, these novel approaches have the potential to advance translational studies in the mechanistic understanding of parent–child transmission of risk and youth psychopathology
    • 

    corecore