156 research outputs found

    Firefly distribution and abundance on mangrove vegetation assemblages in Sepetang estuary, Peninsular Malaysia

    Get PDF
    Pteroptyx fireflies are commonly reported to congregate in large numbers in mangroves. Not much is known about the relationships between firefly distribution and abundance with specific mangrove vegetation assemblages. We conducted a study to investigate the vegetation assemblages that structure the distribution and abundance of Pteroptyx tener in Peninsular Malaysia. The distribution and abundance of fireflies were assessed along an 8 km stretch of mangroves in Sepetang estuary using visual assessment. Statistical analysis was carried out to test the correlation between length of display section and percentage cover of P. tener colonies and the relationship between percentage cover of fireflies with different vegetation assemblages. Five distinct vegetation assemblages were identified comprising different combination of four mangrove species. It was found that shorter display sections had higher percentage cover of P. tener colonies. In addition, vegetation assemblage which consisting of mainly Sonneratia caseolaris and Nypa fruticans was the most preferred type. The results of this study point to the necessity to consider not only a single mangrove species but the entire vegetation assemblage for firefly conservation

    Locked and loading megathrust linked to active subduction beneath the Indo-Burman Ranges

    Get PDF
    The Indo-Burman mountain rangesmarkthe boundary between the Indian and Eurasian plates, north of the Sumatra–Andaman subduction zone. Whether subduction still occurs along this subaerial section of the plate boundary, with 46mm/yr of highly oblique motion, is contentious. About 21mm/yr of shear motion is taken up along the Sagaing Fault, on the eastern margin of the deformation zone. It has been suggested that the remainder of the relative motion is taken up largely or entirely by horizontal strike-slip faulting and that subduction has stopped. Here we present GPS measurements of plate motions in Bangladesh, combined with measurements from Myanmar and northeast India, taking advantage of a more than 300 km subaerial accretionary prism spanning the Indo-Burman Ranges to the Ganges–Brahmaputra Delta. They reveal 13–17mm/yr of plate convergence on an active, shallowly dipping and locked megathrust fault. Most of the strike-slip motion occurs on a few steep faults, consistent with patterns of strain partitioning in subduction zones. Our results strongly suggest that subduction in this region is active, despite the highly oblique plate motion and thick sediments. We suggest that the presence of a locked megathrust plate boundary represents an underappreciated hazard in one of the most densely populated regions of the world

    Do Larval Supply and Recruitment Vary among Chemosynthetic Environments of the Deep Sea?

    Get PDF
    BACKGROUND: The biological communities that inhabit chemosynthetic environments exist in an ephemeral and patchily distributed habitat with unique physicochemical properties that lead to high endemicity. Consequently, the maintenance and recovery from perturbation of the populations in these habitats is, arguably, mainly regulated by larval supply and recruitment. METHODOLOGY/PRINCIPAL FINDINGS: WE USE DATA FROM THE PUBLISHED SCIENTIFIC LITERATURE TO: (1) compare the magnitudes of and variability in larval supply and settlement and recruitment at hydrothermal vents, seeps, and whale, wood and kelp falls; (2) explore factors that affect these life history processes, when information is available; and (3) explore taxonomic affinities in the recruit assemblages of the different chemosynthetic habitats, using multivariate statistical techniques. Larval supply at vents can vary across segments by several orders of magnitude for gastropods; for bivalves, supply is similar at vents on different segments, and at cold seeps. The limited information on larval development suggests that dispersal potential may be highest for molluscs from cold seeps, intermediate for siboglinids at vents and lowest for the whale-bone siboglinid Osedax. Settlement is poorly studied and only at vents and seeps, but tends to be highest near an active source of emanating fluid in both habitats. Rate of recruitment at vents is more variable among studies within a segment than among segments. Across different chemosynthetic habitats, recruitment rate of bivalves is much more variable than that of gastropods and polychaetes. Total recruitment rate ranges only between 0.1 and 1 ind dm(-2) d(-1) across all chemosynthetic habitats, falling above rates in the non-reducing deep sea. The recruit assemblages at vents, seeps and kelp falls have lower taxonomic breadth, and include more families and genera that have many species more closely related to each other than those at whale and wood falls. Vents also have the most uneven taxonomic structure, with fewer recruits represented by higher taxonomic levels (phyla, orders, classes) compared to seeps and wood and kelp falls, whereas the opposite is true at whale falls. CONCLUSIONS/SIGNIFICANCE: Based on our evaluation of the literature, the patterns and regulatory factors of the early history processes in chemosynthetic environments in the deep sea remain poorly understood. More research focused on these early life history stages will allow us to make inferences about the ecological and biogeographic linkages among the reducing habitats in the deep sea

    Deciding Together?:Best Interests and Shared Decision-Making in Paediatric Intensive Care

    Get PDF
    In the western healthcare, shared decision making has become the orthodox approach to making healthcare choices as a way of promoting patient autonomy. Despite the fact that the autonomy paradigm is poorly suited to paediatric decision making, such an approach is enshrined in English common law. When reaching moral decisions, for instance when it is unclear whether treatment or non-treatment will serve a child’s best interests, shared decision making is particularly questionable because agreement does not ensure moral validity. With reference to current common law and focusing on intensive care practice, this paper investigates what claims shared decision making may have to legitimacy in a paediatric intensive care setting. Drawing on key texts, I suggest these identify advantages to parents and clinicians but not to the child who is the subject of the decision. Without evidence that shared decision making increases the quality of the decision that is being made, it appears that a focus on the shared nature of a decision does not cohere with the principle that the best interests of the child should remain paramount. In the face of significant pressures toward the displacement of the child’s interests in a shared decision, advantages of a shared decision to decisional quality require elucidation. Although a number of arguments of this nature may have potential, should no such advantages be demonstrable we have cause to revise our commitment to either shared decision making or the paramountcy of the child in these circumstances

    Blue pigmentation of neustonic copepods benefits exploitation of a prey-rich niche at the air-sea boundary

    Get PDF
    The sea-surface microlayer (SML) at the air-sea interface is a distinct, under-studied habitat compared to the subsurface and copepods, important components of ocean food webs, have developed key adaptations to exploit this niche. By using automated SML sampling, high-throughput sequencing and unmanned aerial vehicles, we report on the distribution and abundance of pontellid copepods in relation to the unique biophysicochemical signature of the SML. We found copepods in the SML even during high exposure to sun-derived ultraviolet radiation and their abundance was significantly correlated to increased algal biomass. We additionally investigated the significance of the pontellids’ blue pigmentation and found that the reflectance peak of the blue pigment matched the water-leaving spectral radiance of the ocean surface. This feature could reduce high visibility at the air-sea boundary and potentially provide camouflage of copepods from their predators

    Age related decline in female lar gibbon great call performance suggests that call features correlate with physical condition

    Get PDF
    Background: White-handed gibbons (Hylobates lar) are small Asian apes known for living in stable territories and producing loud, elaborate vocalizations (songs), often in well-coordinated male/female duets. The female great call, the most conspicuous phrase of the repertoire, has been hypothesized to function in intra-sexual territorial defense. We therefore predicted that characteristics of the great call would correlate with a caller’s physical condition, and thus might honestly reflect resource holding potential (RHP). Because measurement of RHP is virtually impossible for wild animals, we used age as a proxy, hypothesizing that great call climaxes are difficult to produce and maintain over time, and that older adults will therefore perform lower quality great calls than young adults. To test this we analyzed the great call climaxes of 15 wild lar gibbon females at Khao Yai National Park, Thailand and 2 captive females at Leo Conservation Center, Greenwich, CT. Results: Findings show that call climaxes correlate with female age, as young animals (n = 8, mean age: 12.9 years) produced climaxes with a higher frequency range (delta F0), maximum F0 frequency and duty cycle than old animals (n = 9, mean age: 29.6 years). A permuted discriminant function analysis also correctly classified calls by age group. During long song bouts the maximum F0 frequency of great call climaxes’ also decreased. Additional data support the hypothesis that short high notes, associated with rapid inhalation as an individual catches its breath, reflect increased caller effort. Older females produced more high notes than younger females, but the difference only approached statistical significance, suggesting that calling effort may be similar across different ages. Finally, for the first time in this species, we measured peak intensity of calls in captive females. They were capable of producing climaxes in excess of 100 dB at close range (2.7 m). Conclusions: Age and within-bout differences in the lar gibbon great call climax suggest that call features correlate with physical condition and thus the call may have evolved as an honest signal in the context of intra-sexual territorial defense and possibly also in male mate choice via sexual selection, although further testing of these hypotheses is necessary. Results: Findings show that call climaxes correlate with female age, as young animals (n = 8, mean age: 12.9 years) produced climaxes with a higher frequency range (delta F0), maximum F0 frequency and duty cycle than old animals (n = 9, mean age: 29.6 years). A permuted discriminant function analysis also correctly classified calls by age group. During long song bouts the maximum F0 frequency of great call climaxes’ also decreased. Additional data support the hypothesis that short high notes, associated with rapid inhalation as an individual catches its breath, reflect increased caller effort. Older females produced more high notes than younger females, but the difference only approached statistical significance, suggesting that calling effort may be similar across different ages. Finally, for the first time in this species, we measured peak intensity of calls in captive females. They were capable of producing climaxes in excess of 100 dB at close range (2.7 m). Conclusions: Age and within-bout differences in the lar gibbon great call climax suggest that call features correlate with physical condition and thus the call may have evolved as an honest signal in the context of intra-sexual territorial defense and possibly also in male mate choice via sexual selection, although further testing of these hypotheses is necessary

    Genomic Diversity and Evolution of Mycobacterium ulcerans Revealed by Next-Generation Sequencing

    Get PDF
    Mycobacterium ulcerans is the causative agent of Buruli ulcer, the third most common mycobacterial disease after tuberculosis and leprosy. It is an emerging infectious disease that afflicts mainly children and youths in West Africa. Little is known about the evolution and transmission mode of M. ulcerans, partially due to the lack of known genetic polymorphisms among isolates, limiting the application of genetic epidemiology. To systematically profile single nucleotide polymorphisms (SNPs), we sequenced the genomes of three M. ulcerans strains using 454 and Solexa technologies. Comparison with the reference genome of the Ghanaian classical lineage isolate Agy99 revealed 26,564 SNPs in a Japanese strain representing the ancestral lineage. Only 173 SNPs were found when comparing Agy99 with two other Ghanaian isolates, which belong to the two other types previously distinguished in Ghana by variable number tandem repeat typing. We further analyzed a collection of Ghanaian strains using the SNPs discovered. With 68 SNP loci, we were able to differentiate 54 strains into 13 distinct SNP haplotypes. The average SNP nucleotide diversity was low (average 0.06–0.09 across 68 SNP loci), and 96% of the SNP locus pairs were in complete linkage disequilibrium. We estimated that the divergence of the M. ulcerans Ghanaian clade from the Japanese strain occurred 394 to 529 thousand years ago. The Ghanaian subtypes diverged about 1000 to 3000 years ago, or even much more recently, because we found evidence that they evolved significantly faster than average. Our results offer significant insight into the evolution of M. ulcerans and provide a comprehensive report on genetic diversity within a highly clonal M. ulcerans population from a Buruli ulcer endemic region, which can facilitate further epidemiological studies of this pathogen through the development of high-resolution tools

    Man and the Last Great Wilderness: Human Impact on the Deep Sea

    Get PDF
    The deep sea, the largest ecosystem on Earth and one of the least studied, harbours high biodiversity and provides a wealth of resources. Although humans have used the oceans for millennia, technological developments now allow exploitation of fisheries resources, hydrocarbons and minerals below 2000 m depth. The remoteness of the deep seafloor has promoted the disposal of residues and litter. Ocean acidification and climate change now bring a new dimension of global effects. Thus the challenges facing the deep sea are large and accelerating, providing a new imperative for the science community, industry and national and international organizations to work together to develop successful exploitation management and conservation of the deep-sea ecosystem. This paper provides scientific expert judgement and a semi-quantitative analysis of past, present and future impacts of human-related activities on global deep-sea habitats within three categories: disposal, exploitation and climate change. The analysis is the result of a Census of Marine Life – SYNDEEP workshop (September 2008). A detailed review of known impacts and their effects is provided. The analysis shows how, in recent decades, the most significant anthropogenic activities that affect the deep sea have evolved from mainly disposal (past) to exploitation (present). We predict that from now and into the future, increases in atmospheric CO2 and facets and consequences of climate change will have the most impact on deep-sea habitats and their fauna. Synergies between different anthropogenic pressures and associated effects are discussed, indicating that most synergies are related to increased atmospheric CO2 and climate change effects. We identify deep-sea ecosystems we believe are at higher risk from human impacts in the near future: benthic communities on sedimentary upper slopes, cold-water corals, canyon benthic communities and seamount pelagic and benthic communities. We finalise this review with a short discussion on protection and management methods
    corecore