6,940 research outputs found

    A Rare Presentation of Invasive Tuberculosis of the Central Nervous System in an Immunocompetent Patient in a Nonendemic Country.

    Get PDF
    We herein report a rare case of a 25-year-old immunocompetent male patient with disseminated tuberculosis of central nervous system (CNS), first presenting as multiple cerebral lesions with no meningeal involvement. Subsequent diagnostic workup disclosed extensive peritoneal involvement. A broad differential diagnosis was considered, including neoplastic and infectious diseases. The diagnosis was confirmed with positive PCR result for Mycobacterium tuberculosis in the biopsied mesenteric tissue. The patient was started on tuberculostatic regimen with favorable outcome. No acquired or hereditary immunodeficiency was documented. Disseminated tuberculosis in immunocompetent individuals is extremely rare. Genetic susceptibility factors have been reported in individuals with extensive forms of the disease and a high index of suspicion is required, as observed in our case.info:eu-repo/semantics/publishedVersio

    Solid helium at high pressure: A path-integral Monte Carlo simulation

    Full text link
    Solid helium (3He and 4He) in the hcp and fcc phases has been studied by path-integral Monte Carlo. Simulations were carried out in the isothermal-isobaric (NPT) ensemble at pressures up to 52 GPa. This allows one to study the temperature and pressure dependences of isotopic effects on the crystal volume and vibrational energy in a wide parameter range. The obtained equation of state at room temperature agrees with available experimental data. The kinetic energy, E_k, of solid helium is found to be larger than the vibrational potential energy, E_p. The ratio E_k/E_p amounts to about 1.4 at low pressures, and decreases as the applied pressure is raised, converging to 1, as in a harmonic solid. Results of these simulations have been compared with those yielded by previous path integral simulations in the NVT ensemble. The validity range of earlier approximations is discussed.Comment: 7 pages, 5 figure

    Photospheric activity, rotation and magnetic interaction in LHS 6343 A

    Full text link
    Context. The Kepler mission has recently discovered a brown dwarf companion transiting one member of the M4V+M5V visual binary system LHS 6343 AB with an orbital period of 12.71 days. Aims. The particular interest of this transiting system lies in the synchronicity between the transits of the brown dwarf C component and the main modulation observed in the light curve, which is assumed to be caused by rotating starspots on the A component. We model the activity of this star by deriving maps of the active regions that allow us to study stellar rotation and the possible interaction with the brown dwarf companion. Methods. An average transit profile was derived, and the photometric perturbations due to spots occulted during transits are removed to derive more precise transit parameters. We applied a maximum entropy spot model to fit the out-of-transit optical modulation as observed by Kepler during an uninterrupted interval of 500 days. It assumes that stellar active regions consist of cool spots and bright faculae whose visibility is modulated by stellar rotation. Results. Thanks to the extended photometric time series, we refine the determination of the transit parameters and find evidence of spots that are occulted by the brown dwarf during its transits. The modelling of the out-of-transit light curve of LHS 6343 A reveals several starspots rotating with a slightly longer period than the orbital period of the brown dwarf, i.e., 13.13 +- 0.02 days. No signature attributable to differential rotation is observed. We find evidence of a persistent active longitude on the M dwarf preceding the sub- companion point by 100 deg and lasting for at least 500 days. This can be relevant for understanding how magnetic interaction works in low-mass binary and star-planet systems.Comment: 14 pages, 16 figure

    Doppler-beaming in the Kepler light curve of LHS 6343 A

    Get PDF
    Context. Kepler observations revealed a brown dwarf eclipsing the M-type star LHS 6343 A with a period of 12.71 days. In addition, an out-of-eclipse light modulation with the same period and a relative semi-amplitude of 2 x 10^-4 was observed showing an almost constant phase lag to the eclipses produced by the brown dwarf. In a previous work, we concluded that this was due to the light modulation induced by photospheric active regions in LHS 6343 A. Aims. In the present work, we prove that most of the out-of-eclipse light modulation is caused by the Doppler-beaming induced by the orbital motion of the primary star. Methods. We introduce a model of the Doppler-beaming for an eccentric orbit and also considered the ellipsoidal effect. The data were fitted using a Bayesian approach implemented through a Monte Carlo Markov chain method. Model residuals were analysed by searching for periodicities using a Lomb-Scargle periodogram. Results. For the first seven quarters of Kepler observations and the orbit previously derived from the radial velocity measurements, we show that the light modulation of the system outside eclipses is dominated by the Doppler-beaming effect. A period search performed on the residuals shows a significant periodicity of 42.5 +- 3.2 days with a false-alarm probability of 5 x 10^-4, probably associated with the rotational modulation of the primary component.Comment: 6 pages, 7 figure

    Generation of isolated attosecond pulses in the far field by spatial filtering with an intense few-cycle mid-infrared laser

    Get PDF
    We report theoretical calculations of high-order harmonic generation (HHG) of Xe with the inclusion of multi-electron effects and macroscopic propagation of the fundamental and harmonic fields in an ionizing medium. By using the time-frequency analysis we show that the reshaping of the fundamental laser field is responsible for the continuum structure in the HHG spectra. We further suggest a method for obtaining an isolated attosecond pulse (IAP) by using a filter centered on axis to select the harmonics in the far field with different divergence. We also discuss the carrier-envelope-phase dependence of an IAP and the possibility to optimize the yield of the IAP. With the intense few-cycle mid-infrared lasers, this offers a possible method for generating isolated attosecond pulses.Comment: 8 figure

    A multi-wavelength view of the central kiloparsec region in the Luminous Infrared Galaxy NGC1614

    Full text link
    The Luminous Infrared Galaxy NGC1614 hosts a prominent circumnuclear ring of star formation. However, the nature of the dominant emitting mechanism in its central ~100 pc is still under debate. We present sub-arcsecond angular resolution radio, mid-infrared, Pa-alpha, optical, and X-ray observations of NGC1614, aimed at studying in detail both the circumnuclear ring and the nuclear region. The 8.4 GHz continuum emission traced by the Very Large Array (VLA) and the Gemini/T-ReCS 8.7 micron emission, as well as the Pa-alpha line emission, show remarkable morphological similarities within the star-forming ring, suggesting that the underlying emission mechanisms are tightly related. We used an HST/NICMOS Pa-alpha map of similar resolution to our radio maps to disentangle the thermal free-free and non-thermal synchrotron radio emission, from which we obtained the intrinsic synchrotron power-law for each individual region within the central kpc of NGC1614. The radio ring surrounds a relatively faint, steep-spectrum source at the very center of the galaxy, suggesting that the central source is not powered by an AGN, but rather by a compact (r < 90 pc) starburst. Chandra X-ray data also show that the central kpc region is dominated by starburst activity, without requiring the existence of an AGN. We also used publicly available infrared data to model-fit the spectral energy distribution of both the starburst ring and a putative AGN in NGC1614. In summary, we conclude that there is no need to invoke an AGN to explain the observed bolometric properties of the galaxy.Comment: 13 pages, 7 figures, 5 tables. Accepted for publication in Ap

    Observational evidence for a correlation between macroturbulent broadening and line-profile variations in OB Supergiants

    Get PDF
    The spectra of O and B supergiants are known to be affected by a significant form of extra line broadening (usually referred to as macroturbulence) in addition to that produced by stellar rotation. Recent analyses of high resolution spectra have shown that the interpretation of this line broadening as a consequence of large scale turbulent motions would imply highly supersonic velocity fields in photospheric regions, making this scenario quite improbable. Stellar oscillations have been proposed as a likely alternative explanation. As part of a long term observational project, we are investigating the macroturbulent broadening in O and B supergiants and its possible connection with spectroscopic variability phenomena and stellar oscillations. In this letter, we present the first encouraging results of our project, namely firm observational evidence for a strong correlation between the extra broadening and photospheric line-profile variations in a sample of 13 supergiants with spectral types ranging from O9.5 to B8.Comment: 8 pages, 3 figures, accepted for publication in ApJ
    corecore