3,311 research outputs found

    Bondian frames to couple matter with radiation

    Full text link
    A study is presented for the non linear evolution of a self gravitating distribution of matter coupled to a massless scalar field. The characteristic formulation for numerical relativity is used to follow the evolution by a sequence of light cones open to the future. Bondian frames are used to endow physical meaning to the matter variables and to the massless scalar field. Asymptotic approaches to the origin and to infinity are achieved; at the boundary surface interior and exterior solutions are matched guaranteeing the Darmois--Lichnerowicz conditions. To show how the scheme works some numerical models are discussed. We exemplify evolving scalar waves on the following fixed backgrounds: A) an atmosphere between the boundary surface of an incompressible mixtured fluid and infinity; B) a polytropic distribution matched to a Schwarzschild exterior; C) a Schwarzschild- Schwarzschild spacetime. The conservation of energy, the Newman--Penrose constant preservation and other expected features are observed.Comment: 20 pages, 6 figures; to appear in General Relativity and Gravitatio

    Role of the interfacial water structure on electrocatalysis: Oxygen reduction on Pt(1 1 1) in methanesulfonic acid

    Get PDF
    Most of electrocatalytic reactions occur in an aqueous environment. Understanding the influence of water structure on reaction dynamics is fundamental in electrocatalysis. In this work, the role of liquid water structure on the oxygen reduction at Pt(1 1 1) electrode is analyzed in methanesulfonic (MTSA) and perchloric acids. This is because these different anions can exert a different influence on liquid water structure. Results reveal a lower ORR electrode activity in MTSA than in HClO4 solutions and they are discussed in light of anion's influence on water structural ordering. From them, the existence of an outer-sphere, rate determining, step in the ORR mechanism is suggested.This work has been carried out under MINECO project CTQ2013-44083-P (Spain). APSR acknowledges the scholarship “Estudiantes sobresalientes de posgrado” at the UNAL and COLCIENCIAS National Doctoral Scholarship (567). MFS acknowledges the support of UNAL (Research Project 19030)

    Libros

    Get PDF

    Gaseous time projection chambers for rare event detection: Results from the T-REX project. II. Dark matter

    Full text link
    As part of the T-REX project, a number of R&D and prototyping activities have been carried out during the last years to explore the applicability of Micromegas-read gaseous TPCs in rare event searches like double beta decay (DBD), axion research and low-mass WIMP searches. While in the companion paper we focus on DBD, in this paper we focus on the results regarding the search for dark matter candidates, both axions and WIMPs. Small ultra-low background Micromegas detectors are used to image the x-ray signal expected in axion helioscopes like CAST at CERN. Background levels as low as 0.8×1060.8\times 10^{-6} c keV1^{-1}cm2^{-2}s1^{-1} have already been achieved in CAST while values down to 107\sim10^{-7} c keV1^{-1}cm2^{-2}s1^{-1} have been obtained in a test bench placed underground in the Laboratorio Subterr\'aneo de Canfranc. Prospects to consolidate and further reduce these values down to 108\sim10^{-8} c keV1^{-1}cm2^{-2}s1^{-1}will be described. Such detectors, placed at the focal point of x-ray telescopes in the future IAXO experiment, would allow for 105^5 better signal-to-noise ratio than CAST, and search for solar axions with gaγg_{a\gamma} down to few 1012^{12} GeV1^{-1}, well into unexplored axion parameter space. In addition, a scaled-up version of these TPCs, properly shielded and placed underground, can be competitive in the search for low-mass WIMPs. The TREX-DM prototype, with \sim0.300 kg of Ar at 10 bar, or alternatively \sim0.160 kg of Ne at 10 bar, and energy threshold well below 1 keV, has been built to test this concept. We will describe the main technical solutions developed, as well as the results from the commissioning phase on surface. The anticipated sensitivity of this technique might reach 1044\sim10^{-44} cm2^2 for low mass (<10<10 GeV) WIMPs, well beyond current experimental limits in this mass range.Comment: Published in JCAP. New version with erratum incorporated (new figure 14

    Breaking the configurational anisotropy in Fe single crystal nanomagnets

    Get PDF
    In this work, we improve the ability to tailor the switching mechanism in nanomagnets by introducing an additional, highly controlled source of anisotropy: magnetocrystalline anisotropy. We analyze the vortex dynamics in single crystal Fe nanotriangles with different orientations of the crystalline axes. By experimental studies and simulation, we show that the angular dependence of the vortex annihilation field springs from the convolution of the crystalline and configurational anisotropies. In contrast, the remanence and the nucleation field present a much simpler behavior controlled by the existence of a single symmetry axis when shape and crystalline orientation are taken into account

    Lessons from the operation of the "Penning-Fluorescent" TPC and prospects

    Get PDF
    We have recently reported the development of a new type of high-pressure Xenon time projection chamber operated with an ultra-low diffusion mixture and that simultaneously displays Penning effect and fluorescence in the near-visible region (300 nm). The concept, dubbed `Penning-Fluorescent' TPC, allows the simultaneous reconstruction of primary charge and scintillation with high topological and calorimetric fidelity
    corecore