538 research outputs found

    Species-diagnostic microsatellite loci for the fig wasp genus Pegoscapus

    Get PDF
    To obtain tools for the estimation of inbreeding and assignment of offspring to matrilines, we developed 13 microsatellite loci from the fig wasps that pollinate Ficus obtusifolia. Based on morphological studies, it was thought that a single species (Pegoscapus hoffmeyer) pollinated this fig. However, our data revealed the presence of two coexisting cryptic species. Several diagnostic microsatellite markers may be used to distinguish these two cryptic species. The new microsatellites can be used across a wide range of fig-pollinating wasp species for both evolutionary and population genetic studies

    Reverse taxonomy for elucidating diversity of insect-associated nematodes: a case study with termites

    Get PDF
    BACKGROUND: The molecular operational taxonomic unit(MOTU)has recently been applied to microbial and microscopic animal biodiversity surveys. However, in many cases, some of the MOTUs cannot be definitively tied to any of the taxonomic groups in current databases. To surmount these limitations, the concept of "reverse taxonomy" has been proposed, i.e. to primarily list the MOTUs with morphological information, and then identify and/or describe them at genus/species level using subsamples or by re-isolating the target organisms. Nevertheless, the application of "reverse taxonomy" has not been sufficiently evaluated. Therefore, the practical applicability of "reverse taxonomy" is tested using termite-associated nematodes as a model system for phoretic/parasitic organisms which have high habitat specificity and a potential handle (their termite host species) for re-isolation attempts. METHODOLOGY: Forty-eight species (from 298 colonies) of termites collected from the American tropics and subtropics were examined for their nematode associates using the reverse taxonomy method and culturing attempts (morphological identification and further sequencing efforts). The survey yielded 51 sequence types (= MOTUs) belonging to 19 tentatively identified genera. Within these, four were identified based on molecular data with preliminary morphological observation, and an additional seven were identified or characterized from successful culturing, leaving eight genera unidentified. CONCLUSIONS: That 1/3 of the genera were not successfully identified suggests deficiencies in the depth of available sequences in the database and biological characters, i.e. usually isolated as phoretic/parasitic stages which are not available for morphological identification, and too many undiscovered lineages of nematodes. Although there still is the issue of culturability of nematodes, culturing attempts could help to make reverse taxonomy methods more effective. However, expansion of the database, i.e., production of more DNA barcodes tied to biological information by finding and characterizing additional new and known lineages, is necessary for analyzing functional diversity.Natsumi Kanzaki, Robin M. Giblin-Davis, Rudolf H. Scheffrahn, Hisatomo Taki, Alejandro Esquivel, Kerrie A. Davies and E. Allen Herr

    High temperature x ray diffraction determination of the body-centered-cubic-face-centered-cubic transformation temperature in (Fe 70Ni 30) 88Zr 7B 4Cu 1 nanocomposites

    Get PDF
    In situ high-temperature x ray diffraction and magnetization measurements were performed on a melt-spun (Fe70Ni30)88Zr7B4Cu1 amorphous alloy to follow its structural evolution. At 728 K, a bcc-FeNi phase was observed as the primary crystallization product followed by transformation to an fcc phase rv773 K. During cooling to room temperature, the fcc-to-bcc transformation was not observed, and the metastable fcc-NiFe phase was retained at room temperature

    Evolutionary Roots of Property Rights; The Natural and Cultural Nature of Human Cooperation

    Get PDF
    Debates about the role of natural and cultural selection in the development of prosocial, antisocial and socially neutral mechanisms and behavior raise questions that touch property rights, cooperation, and conflict. For example, some researchers suggest that cooperation and prosociality evolved by natural selection (Hamilton 1964, Trivers 1971, Axelrod and Hamilton 1981, De Waal 2013, 2014), while others claim that natural selection is insufficient for the evolution of cooperation, which required in addition cultural selection (Sterelny 2013, Bowles and Gintis 2003, Seabright 2013, Norenzayan 2013). Some scholars focus on the complexity and hierarchical nature of the evolution of cooperation as involving different tools associated with lower and the higher levels of competition (Nowak 2006, Okasha 2006); others suggest that humans genetically inherited heuristics that favor prosocial behavior such as generosity, forgiveness or altruistic punishment (Ridley 1996, Bowles and Gintis 2004, Rolls 2005). We argue these mechanisms are not genetically inherited; rather, they are features inherited through cultural selection. To support this view we invoke inclusive fitness theory, which states that individuals tend to maximize their inclusive fitness, rather than maximizing group fitness. We further reject the older notion of natural group selection - as well as more recent versions (West, Mouden, Gardner 2011) – which hold that natural selection favors cooperators within a group (Wynne-Edwards 1962). For Wynne-Edwards, group selection leads to group adaptations; the survival of individuals therefore depends on the survival of the group and a sharing of resources. Individuals who do not cooperate, who are selfish, face extinction due to rapid and over-exploitation of resources

    Anonymous and EST-based microsatellite DNA markers that transfer broadly across the fig genus (Ficus, Moraceae)

    Full text link
    • Premise of the study: We developed a set of microsatellite markers for broad utility across the species-rich pantropical tree genus Ficus (fig trees). The markers were developed to study population structure, hybridization, and gene flow in neotropical species. • Methods and Results: We developed seven novel primer sets from expressed sequence tag (EST) libraries of F. citrifolia and F. popenoei (subgen. Urostigma sect. Americana) and optimized five previously developed anonymous loci for cross-species amplification. The markers were successfully tested on four species from the basal subgenus Pharmacosycea sect. Pharmaco- sycea (F. insipida, F. maxima, F. tonduzii, and F. yoponensis) and seven species of the derived subgenus Urostigma (F. citrifolia, F. colubrinae, F. costaricana, F. nymphaeifolia, F. obtusifolia, F. pertusa, and F. popenoei). The 12 markers amplified consis- tently and displayed polymorphism in all the species. • Conclusions: This set of microsatellite markers is transferable across the phylogenetic breadth of Ficus, and should therefore be useful for studies of population structure and gene flow in approximately 750 fig species worldwide.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/92471/1/Heer2012.pdf8

    Host specificity in a diverse Neotropical tick community: an assessment using quantitative network analysis and host phylogeny

    Get PDF
    Background: Host specificity is a fundamental determinant of tick population and pathogen transmission dynamics, and therefore has important implications for human health. Tick host specificity is expected to be particularly high in the tropics, where communities of ticks, hosts and pathogens are most diverse. Yet the degree to which tropical tick species are host-specific remains poorly understood. Combining new field data with published records, we assessed the specificity of tick-host associations in Panama, a diverse Neotropical region. Methods: The resulting dataset includes 5,298 adult ticks belonging to 41 species of eight genera that were directly collected from 68 vertebrate host species of 17 orders. We considered three important aspects of tick host specificity: (i) the relative ecological importance of each host species (structural specificity); (ii) relatedness among host species (phylogenetic specificity); and (iii) spatial scale-dependence of tick-host relationships (geographical specificity). Applying quantitative network analyses and phylogenetic tools with null model comparisons, we assessed the structural and phylogenetic specificity across three spatial scales, ranging from central Panama to countrywide. Further, we tested whether species-rich tick genera parasitized a wider variety of hosts than species-poor genera, as expected when ticks specialize on different host species. Results: Most tick species showed high structural and/or phylogenetic specificity in the adult stage. However, after correcting for sampling effort, we found little support for geographical specificity. Across the three scales, adult ticks tended to be specific to a limited number of host species that were phylogenetically closely related. These host species in turn, were parasitized by tick species from distinct genera, suggesting switching among distantly related hosts is common at evolutionary timescales. Further, there was a strong positive relationship between the taxonomic richness of the tick genera and that of their hosts, consistent with distinct tick species being relatively specific to different host species. Conclusions: Our results indicate that in the adult stage, most ticks in the diverse Neotropical community studied are host specialists. This contrasts with earlier assessments, but agrees with findings from other host-parasite systems. High host specificity in adult ticks implies high susceptibility to local tick-host co-extirpation, limited ability to colonize new habitats and limited potential for interspecific pathogen transmission.Background: Host specificity is a fundamental determinant of tick population and pathogen transmission dynamics, and therefore has important implications for human health. Tick host specificity is expected to be particularly high in the tropics, where communities of ticks, hosts and pathogens are most diverse. Yet the degree to which tropical tick species are host-specific remains poorly understood. Combining new field data with published records, we assessed the specificity of tick-host associations in Panama, a diverse Neotropical region. Methods: The resulting dataset includes 5,298 adult ticks belonging to 41 species of eight genera that were directly collected from 68 vertebrate host species of 17 orders. We considered three important aspects of tick host specificity: (i) the relative ecological importance of each host species (structural specificity); (ii) relatedness among host species (phylogenetic specificity); and (iii) spatial scale-dependence of tick-host relationships (geographical specificity). Applying quantitative network analyses and phylogenetic tools with null model comparisons, we assessed the structural and phylogenetic specificity across three spatial scales, ranging from central Panama to countrywide. Further, we tested whether species-rich tick genera parasitized a wider variety of hosts than species-poor genera, as expected when ticks specialize on different host species. Results: Most tick species showed high structural and/or phylogenetic specificity in the adult stage. However, after correcting for sampling effort, we found little support for geographical specificity. Across the three scales, adult ticks tended to be specific to a limited number of host species that were phylogenetically closely related. These host species in turn, were parasitized by tick species from distinct genera, suggesting switching among distantly related hosts is common at evolutionary timescales. Further, there was a strong positive relationship between the taxonomic richness of the tick genera and that of their hosts, consistent with distinct tick species being relatively specific to different host species. Conclusions: Our results indicate that in the adult stage, most ticks in the diverse Neotropical community studied are host specialists. This contrasts with earlier assessments, but agrees with findings from other host-parasite systems. High host specificity in adult ticks implies high susceptibility to local tick-host co-extirpation, limited ability to colonize new habitats and limited potential for interspecific pathogen transmission

    Host body size and the diversity of tick assemblages on Neotropical vertebrates

    Get PDF
    AbstractIdentifying the factors that influence the species diversity and distribution of ticks (Acari: Ixodida) across vertebrate host taxa is of fundamental ecological and medical importance. Host body size is considered one of the most important determinants of tick abundance, with larger hosts having higher tick burdens. The species diversity of tick assemblages should also be greater on larger-bodied host species, but empirical studies testing this hypothesis are lacking. Here, we evaluate this relationship using a comparative dataset of feeding associations from Panama between 45 tick species and 171 host species that range in body size by three orders of magnitude. We found that tick species diversity increased with host body size for adult ticks but not for immature ticks. We also found that closely related host species tended to have similar tick species diversity, but correcting for host phylogeny did not alter the relationships between host body size and tick species diversity. The distribution of tick species was highly aggregated, with approximately 20% of the host species harboring 80% of all tick species, following the Pareto principle or 20/80 Rule. Thus, the aggregated pattern commonly observed for tick burdens and disease transmission also holds for patterns of tick species richness. Our finding that the adult ticks in this system preferentially parasitize large-bodied host species suggests that the ongoing anthropogenic loss of large-bodied vertebrates is likely to result in host-tick coextinction events, even when immature stages feed opportunistically. As parasites play critical roles in ecological and evolutionary processes, such losses may profoundly affect ecosystem functioning and services
    corecore