287 research outputs found

    An investigation of various computational techniques in optical fringe analysis.

    Get PDF
    Fringe projection is an optical technique for three dimensional non-contact measurement of height distributions. A fringe pattern is projected onto an object's surface and, when viewed off-axis, it deforms to follow the shape of the object. The deformed fringe pattern is analysed to obtain its phase, information that is directly related to the height distribution of the surface by a proportionality constant. This thesis analyses some key problems in fringe projection analysis. Special attention is focused on the automatisation of the process with Fourier Fringe Analysis (FFA). Unwrapping, or elimination of 21t discontinuities in a phase map, is treated in detail. Two novel unwrapping techniques are proposed, analysed and demonstrated. A new method to reduce the number of wraps in the resulting phase distribution is developed. A number of problems related to FFA are discussed, and new techniques are presented for their resolution. In particular, a technique with better noise isolation is developed and a method to analyse non-fullfield images based on function mapping is suggested. The use of parallel computation in the context of fringe analysis is considered. The parallelisation of cellular automata in distributed memory machines is discussed and analysed. A comparison between occam 2 and HPF, two compilers based upon a very different philosophy, is given. A case study with implementations in occam 2 and high performance FORTRAN (HPF) is presented. The advantages and disadvantages of each solution are critically assessed

    IMscin001 Part 2: a randomised phase III, open-label, multicentre study examining the pharmacokinetics, efficacy, immunogenicity, and safety of atezolizumab subcutaneous versus intravenous administration in previously treated locally advanced or metastatic non-small-cell lung cancer and pharmacokinetics comparison with other approved indications

    Get PDF
    Non-small-cell lung cancer; Pharmacokinetics; SubcutaneousCàncer de pulmó de cèl·lules no petites; Farmacocinètica; SubcutaniCáncer de pulmón de células no pequeñas; Farmacocinética; SubcutáneoBackground Atezolizumab intravenous (IV) is approved for the treatment of various solid tumours. To improve treatment convenience and health care efficiencies, a coformulation of atezolizumab and recombinant human hyaluronidase PH20 was developed for subcutaneous (SC) use. Part 2 of IMscin001 (NCT03735121) was a randomised phase III, open-label, multicentre, noninferiority study comparing the drug exposure of atezolizumab SC with atezolizumab IV. Patients and methods Eligible patients with locally advanced/metastatic non-small-cell lung cancer were randomised 2 : 1 to receive atezolizumab SC (1875 mg; n = 247) or IV (1200 mg; n = 124) every 3 weeks. The co-primary endpoints were cycle 1 observed trough serum concentration (Ctrough) and model-predicted area under the curve from days 0 to 21 (AUC0-21 d). The secondary endpoints were steady-state exposure, efficacy, safety, and immunogenicity. Exposure following atezolizumab SC was then compared with historical atezolizumab IV values across approved indications. Results The study met both of its co-primary endpoints: cycle 1 observed Ctrough {SC: 89 μg/ml [coefficient of variation (CV): 43%] versus IV: 85 μg/ml (CV: 33%); geometric mean ratio (GMR), 1.05 [90% confidence interval (CI) 0.88-1.24]} and model-predicted AUC0-21 d [SC: 2907 μg d/ml (CV: 32%) versus IV: 3328 μg d/ml (CV: 20%); GMR, 0.87 (90% CI 0.83-0.92)]. Progression-free survival [hazard ratio 1.08 (95% CI 0.82-1.41)], objective response rate (SC: 12% versus IV: 10%), and incidence of anti-atezolizumab antibodies (SC: 19.5% versus IV: 13.9%) were similar between arms. No new safety concerns were identified. Ctrough and AUC0-21 d for atezolizumab SC were consistent with the other approved atezolizumab IV indications. Conclusions Compared with IV, atezolizumab SC demonstrated noninferior drug exposure at cycle 1. Efficacy, safety, and immunogenicity were similar between arms and consistent with the known profile for atezolizumab IV. Similar drug exposure and clinical outcomes following SC and IV administration support the use of atezolizumab SC as an alternative to atezolizumab IV.This work was supported by F. Hoffmann-La Roche Ltd (no grant number)

    Methodology and Neuromarkers for Cetaceans’ Brains

    Get PDF
    Cetacean brain sampling may be an arduous task due to the difficulty of collecting and histologically preparing such rare and large specimens. Thus, one of the main challenges of working with cetaceans’ brains is to establish a valid methodology for an optimal manipulation and fixation of the brain tissue, which allows the samples to be viable for neuroanatomical and neuropathological studies. With this in view, we validated a methodology in order to preserve the quality of such large brains (neuroanatomy/neuropathology) and at the same time to obtain fresh brain samples for toxicological, virological, and microbiological analysis (neuropathology). A fixation protocol adapted to brains, of equal or even three times the size of human brains, was studied and tested. Finally, we investigated the usefulness of a panel of 20 antibodies (neuromarkers) associated with the normal structure and function of the brain, pathogens, age-related, and/or functional variations. The sampling protocol and some of the 20 neuromarkers have been thought to explore neurodegenerative diseases in these long-lived animals. To conclude, many of the typical measures used to evaluate neuropathological changes do not tell us if meaningful cellular changes have occurred. Having a wide panel of antibodies and histochemical techniques available allows for delving into the specific behavior of the neuronal population of the brain nuclei and to get a “fingerprint” of their real status

    Shifting of wrapped phase maps in the frequency domain using a rational number

    Get PDF
    The number of phase wraps in an image can be either reduced, or completely eliminated, by transforming the image into the frequency domain using a Fourier transform, and then shifting the spectrum towards the origin. After this, the spectrum is transformed back to the spatial domain using the inverse Fourier transform and finally the phase is extracted using the arctangent function. However, it is a common concern that the spectrum can be shifted only by an integer number, meaning that the phase wrap reduction is often not optimal. In this paper we propose an algorithm than enables the spectrum to be frequency shifted by a rational number. The principle of the proposed method is confirmed both by using an initial computer simulation and is subsequently validated experimentally on real fringe patterns. The technique may offer in some cases the prospects of removing the necessity for a phase unwrapping process altogether and/or speeding up the phase unwrapping process. This may be beneficial in terms of potential increases in signal recovery robustness and also for use in time-critical applications

    Actas II Congreso Hispanico de Latin Medieval (Leon, 11-14 de Noviembre de 1997)

    Get PDF

    Distributed acoustic sensing for seismic activity monitoring

    Get PDF
    Continuous, real-time monitoring of surface seismic activity around the globe is of great interest for acquiring new insight into global tomography analyses and for recognition of seismic patterns leading to potentially hazardous situations. The already-existing telecommunication fiber optic network arises as an ideal solution for this application, owing to its ubiquity and the capacity of optical fibers to perform distributed, highly sensitive monitoring of vibrations at relatively low cost (ultra-high density of point sensors available with minimal deployment of new equipment). This perspective article discusses early approaches on the application of fiber-optic distributed acoustic sensors (DASs) for seismic activity monitoring. The benefits and potential impact of DAS technology in these kinds of applications are here illustrated with new experimental results on teleseism monitoring based on a specific approach: the so-called chirped-pulse DAS. This technology offers promising prospects for the field of seismic tomography due to its appealing properties in terms of simplicity, consistent sensitivity across sensing channels, and robustness. Furthermore, we also report on several signal processing techniques readily applicable to chirped-pulse DAS recordings for extracting relevant seismic information from ambient acoustic noise. The outcome presented here may serve as a foundation for a novel conception for ubiquitous seismic monitoring with minimal investment

    Distributed acoustic sensing for seismic activity monitoring

    Get PDF
    Continuous, real-time monitoring of surface seismic activity around the globe is of great interest for acquiring new insight into global tomography analyses and for recognition of seismic patterns leading to potentially hazardous situations. The already-existing telecommunication fiber optic network arises as an ideal solution for this application, owing to its ubiquity and the capacity of optical fibers to perform distributed, highly sensitive monitoring of vibrations at relatively low cost (ultra-high density of point sensors available with minimal deployment of new equipment). This perspective article discusses early approaches on the application of fiber-optic distributed acoustic sensors (DASs) for seismic activity monitoring. The benefits and potential impact of DAS technology in these kinds of applications are here illustrated with new experimental results on teleseism monitoring based on a specific approach: the so-called chirped-pulse DAS. This technology offers promising prospects for the field of seismic tomography due to its appealing properties in terms of simplicity, consistent sensitivity across sensing channels, and robustness. Furthermore, we also report on several signal processing techniques readily applicable to chirped-pulse DAS recordings for extracting relevant seismic information from ambient acoustic noise. The outcome presented here may serve as a foundation for a novel conception for ubiquitous seismic monitoring with minimal investment

    HotPoint: hot spot prediction server for protein interfaces

    Get PDF
    The energy distribution along the protein–protein interface is not homogenous; certain residues contribute more to the binding free energy, called ‘hot spots’. Here, we present a web server, HotPoint, which predicts hot spots in protein interfaces using an empirical model. The empirical model incorporates a few simple rules consisting of occlusion from solvent and total knowledge-based pair potentials of residues. The prediction model is computationally efficient and achieves high accuracy of 70%. The input to the HotPoint server is a protein complex and two chain identifiers that form an interface. The server provides the hot spot prediction results, a table of residue properties and an interactive 3D visualization of the complex with hot spots highlighted. Results are also downloadable as text files. This web server can be used for analysis of any protein–protein interface which can be utilized by researchers working on binding sites characterization and rational design of small molecules for protein interactions. HotPoint is accessible at http://prism.ccbb.ku.edu.tr/hotpoint
    corecore