3,952 research outputs found

    Demonstration of a pulsing liquid hydrogen/liquid oxygen thruster

    Get PDF
    Successful operation of a pulsing liquid hydrogen/liquid oxygen attitude control propulsion system thruster (1250 lb sub f) at cryogenic inlet conditions while maintaining high specific impulse and low impulse bit capability was demonstrated. Significant technical advances and departures from conventional injector design practices were necessary in order to achieve an operable thruster. These advancements were achieved through extensive analyses of heat transfer and injector manifold priming that established the baseline feasibility for an actual hardware design. The primary subject of this paper is the result of experimental evaluation of the 45 R hydrogen inlet temperature injector concept. The test matrix consisted of 66 hot firing tests in a heat sink thrust chamber

    Towards a new theory of practice for community health psychology

    Get PDF
    The article sets out the value of theorizing collective action from a social science perspective that engages with the messy actuality of practice. It argues that community health psychology relies on an abstract version of Paulo Freire’s earlier writing, the Pedagogy of the Oppressed, which provides scholar-activists with a ‘map’ approach to collective action. The article revisits Freire’s later work, the Pedagogy of Hope, and argues for the importance of developing a ‘journey’ approach to collective action. Theories of practice are discussed for their value in theorizing such journeys, and in bringing maps (intentions) and journeys (actuality) closer together

    Effective numerical simulation of the Klein–Gordon–Zakharov system in the Zakharov limit

    Get PDF
    Solving the Klein-Gordon-Zakharov (KGZ) system in the high-plasma frequency regime c≫1c\gg1 is numerically severely challenging due to the highly oscillatory nature or the problem. To allow reliable approximations classical numerical schemes require severe step size restrictions depending on the small parameter c−2c^{−2} . This leads to large errors and huge computational costs. In the singular limit c→∞c\to\infty the Zakharov system appears as the regular limit system for the KGZ system. It is the purpose of this paper to use this approximation in the construction of an effective numerical scheme for the KGZ system posed on the torus in the highly oscillatory regime c≫1c\gg1. The idea is to filter out the highly oscillatory phases explicitly in the solution. This allows us to play back the numerical task to solving the non-oscillatory Zakharov limit system. The latter can be solved very efficiently without any step size restrictions. The numerical approximation error is then estimated by showing that solutions of the KGZ system in this singular limit can be approximated via the solutions of the Zakharov system and by proving error estimates for the numerical approximation of the Zakharov system. We close the paper with numerical experiments which show that this method is more effective than other methods in the high-plasma frequency regime c≫1c\gg1

    Interferometry with Bose-Einstein Condensates in Microgravity

    Full text link
    Atom interferometers covering macroscopic domains of space-time are a spectacular manifestation of the wave nature of matter. Due to their unique coherence properties, Bose-Einstein condensates are ideal sources for an atom interferometer in extended free fall. In this paper we report on the realization of an asymmetric Mach-Zehnder interferometer operated with a Bose-Einstein condensate in microgravity. The resulting interference pattern is similar to the one in the far-field of a double-slit and shows a linear scaling with the time the wave packets expand. We employ delta-kick cooling in order to enhance the signal and extend our atom interferometer. Our experiments demonstrate the high potential of interferometers operated with quantum gases for probing the fundamental concepts of quantum mechanics and general relativity.Comment: 8 pages, 3 figures; 8 pages of supporting materia

    A Kerr Polarization Controller

    Get PDF
    Kerr-effect-induced changes of the polarization state of light are well known in pulsed laser systems. An example is nonlinear polarization rotation, which is critical to the operation of many types of mode-locked lasers. Here, we demonstrate that the Kerr effect in a high-finesse Fabry-PĂ©rot resonator can be utilized to control the polarization of a continuous wave laser. It is shown that a linearly-polarized input field is converted into a left- or right-circularly-polarized field, controlled via the optical power. The observations are explained by Kerr-nonlinearity induced symmetry breaking, which splits the resonance frequencies of degenerate modes with opposite polarization handedness in an otherwise symmetric resonator. The all-optical polarization control is demonstrated at threshold powers down to 7 mW. The physical principle of such Kerr effect-based polarization controllers is generic to high-Q Kerr-nonlinear resonators and could also be implemented in photonic integrated circuits. Beyond polarization control, the spontaneous symmetry breaking of polarization states could be used for polarization filters or highly sensitive polarization sensors when operated close to the symmetry-breaking point

    Dexamethasone-induced cisplatin and gemcitabine resistance in lung carcinoma samples treated ex vivo

    Get PDF
    Chemotherapy for lung cancer not only has severe side effects but frequently also exhibits limited, if any clinical effectiveness. Dexamethasone (DEX) and similar glucocorticoids (GCs) such as prednisone are often used in the clinical setting, for example, as cotreatment to prevent nausea and other symptoms. Clinical trials evaluating the impact of GCs on tumour control and patient survival of lung carcinoma have never been performed. Therefore, we isolated cancer cells from resected lung tumour specimens and treated them with cisplatin in the presence or absence of DEX. Cell number of viable and dead cells was evaluated by trypan blue exclusion and viability was measured by the MTT-assay. We found that DEX induced resistance toward cisplatin in all of 10 examined tumour samples. Similar results were found using gemcitabine as cytotoxic drug. Survival of drug-treated lung carcinoma cells in the presence of DEX was longlasting as examined 2 and 3 weeks after cisplatin treatment of a lung carcinoma cell line. These data corroborate recent in vitro and in vivo xenograft findings and rise additional concerns about the widespread combined use of DEX with antineoplastic drugs in the clinical management of patients with lung cancer

    Silicon-organic hybrid (SOH) devices and their use in comb-based communication systems

    Get PDF
    Advanced wavelength-division multiplex-ing (WDM) requires both efficient multi-wavelength light sources to generate optical carriers and highly scalable photonic-electronic interfaces to encode data on these carriers. In this paper, we give an overview on our recent progress regarding silicon-organic hy-brid (SOH) integration and comb-based WDM transmission
    • 

    corecore