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Abstract — Advanced wavelength-division multiplex-
ing (WDM) requires both efficient multi-wavelength 
light sources to generate optical carriers and highly 
scalable photonic-electronic interfaces to encode data 
on these carriers. In this paper, we give an overview 
on our recent progress regarding silicon-organic hy-
brid (SOH) integration and comb-based WDM 
transmission. 
Keywords — Silicon photonics, silicon-organic hybrid (SOH) 
integration, frequency combs, optical interconnects 

SUMMARY 
High-speed optical interconnects within and between 
data centers rely on advanced wavelength-division multi-
plexing (WDM) schemes that are scalable to large chan-
nel counts. This requires power-efficient photonic-
electronic interfaces that can be densely integrated at low 
cost as well as chip-scale light sources that can provide a 
multitude of narrowband optical carriers for WDM 
transmission. Photonic-electronic interfaces can be effi-
ciently realized on the silicon photonic platform, in par-
ticular when exploiting the unique performance of organ-
ic electro-optic materials using the silicon-organic hybrid 
(SOH) approach. At the same time, optical frequency 
combs lend themselves as multi-wavelength sources for 
scalable WDM transmission. This paper gives an over-
view on our recent progress in the fields of SOH integra-
tion and comb-based WDM transmission and discusses 
the prospects of merging the two approaches.    
Silicon photonics shows tremendous potential for large-
scale photonic-electronic integration by fabless fabrica-
tion of photonic and electronic circuits [1]. Silicon as an 
optical material, however, falls short of properties that 
are indispensable for high-performance photonic-
electronic interfaces. In particular, the inversion sym-
metry of the silicon crystal lattice inhibits technically 
relevant second-order nonlinearities, thereby making 
electro-optic modulators challenging. To overcome these 
deficiencies, the silicon-organic hybrid (SOH) concept 

combines silicon photonic circuits with highly efficient 
organic electro-optic materials [2]. This approach leads 
to highly efficient devices, featuring voltage-length prod-
ucts well below 1 Vmm and energy consumptions of on-
ly a few fJ per bit [3]. The response of the electro-optic 
materials is ultra-fast and enables small-signal modula-
tion at 100 GHz [4], generation of 100 Gbit/s on-of-
keying (OOK) signals [5], and multi-level signaling at 
symbol rates of 64 GBd [6]. Moreover, we demonstrated 
generation of advanced modulation formats such as 
16QAM at record-low energy consumptions and with 
symbol rates (bit rates) of up to 63 GBd (252 Gbit/s) 
transmitted on a single wavelength and a single polariza-
tion [7] – [9]. We further show that the extraordinarily 
low operating voltage of SOH modulators allows opera-
tion of the devices directly from standard output ports of 
field-programmable gate arrays (FPGA), without the 
need for external amplifiers or digital-to-analog convert-
ers. Such schemes can be used even if higher-order mod-
ulation formats such as 16QAM are to be generated [10]. 
SOH approach is a versatile concept that goes far beyond 
electro-optic modulators. We have also shown that com-
pact and power-efficient SOH phase shifters can be real-
ized by using liquid crystals (LC) as cladding materi-
als [11]. We have further demonstrated that the concept 
of SOH integration can be transferred to plasmonic 
waveguide structures, leading to plasmonic-organic hy-
brid (POH) devices [12] that may open the route for 
modulation at THz frequencies [2].  
Regarding WDM transmission based on optical frequen-
cy combs, our work aims at exploiting chip-scale comb 
sources that can be combined with SOH transmitters us-
ing monolithic or multi-chip integration concepts. Unlike 
carriers derived from a bank of individual laser modules, 
the tones of a comb are intrinsically equidistant in fre-
quency, thereby enabling transmission at highest spectral 
efficiency. In addition, stochastic frequency variations of 
the carriers are strongly correlated, which enables effi-
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cient compensation of impairments caused by nonlineari-
ties of the transmission fiber [13].  
We performed a series of experiments to investigate the 
viability of chip-scale comb sources for WDM transmis-
sion.  In a first set of experiments, we explore frequency 
comb generation using SOH electro-optic modulators, 
leading to line rates up to 1.152 Tbit/s on 9 optical carri-
ers [14]. These devices enable large modulation depths at 
moderate drive voltages, thereby generating broadband 
frequency combs from a single continuous-wave (cw) 
laser line. Modulator-based comb generators lend them-
selves to monolithic co-integration with SOH transmit-
ters. In a second set of experiments, we use gain-
switching of an injection-locked laser diode to generate 
frequency combs [15]. These so-called gain-switched 
combs sources (GSCS) enable line rates of more than 
2 Tbit/s using 24 comb lines as optical carriers. More 
recently, we have demonstrated that GSCS can not only 
act as light sources at the transmitter, but also as multi-
wavelength local oscillators at the receiver [16]. In a 
third set of experiments, we use quantum-dash mode-
locked laser diodes (MLLD) as frequency comb sources. 
These devices exhibit rather large optical linewidths, 
which either requires dedicated phase noise reduction 
schemes [17], self-homodyne detection [18], or digital 
phase tracking [19] to enable coherent communications 
with higher-order modulation formats at low symbol 
rates. At high symbol rates of, e.g., 40 GBd or more, car-
rier phase noise is less detrimental, and no additional 
measures are needed. In a WDM experiment with 52 
channels, we demonstrate transmission of an aggregate 
line rate of 8.32 Tbit/s over a transmission distance of 
75 km [19]. A fourth set of experiments is dedicated to 
exploiting Kerr nonlinearities in integrated silicon-nitride 
(SiN) microcavities for frequency comb generation. We 
demonstrate coherent communication using a Kerr fre-
quency comb source, achieving line rates of up to 
1.44 Tbit/s on 20 carriers [20]. We are currently working 
on increasing the transmission speed to data rates beyond 
10 Tbit/s by using cavity-soliton Kerr combs that can 
provide hundreds of spectral carriers [21], [22]. Our ex-
periments show that frequency comb generation in chip-
scale devices represents a viable approach to terabit/s 
communications. GSCS, MLLD, and Kerr comb genera-
tors can be efficiently combined with SOH transmitters 
in optical multi-chip modules using the concept of pho-
tonic wire bonding [23], [24]. 
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