6,921 research outputs found
Ultra-Low-Power Superconductor Logic
We have developed a new superconducting digital technology, Reciprocal
Quantum Logic, that uses AC power carried on a transmission line, which also
serves as a clock. Using simple experiments we have demonstrated zero static
power dissipation, thermally limited dynamic power dissipation, high clock
stability, high operating margins and low BER. These features indicate that the
technology is scalable to far more complex circuits at a significant level of
integration. On the system level, Reciprocal Quantum Logic combines the high
speed and low-power signal levels of Single-Flux- Quantum signals with the
design methodology of CMOS, including low static power dissipation, low latency
combinational logic, and efficient device count.Comment: 7 pages, 5 figure
Evaluation and demonstration of the use of cryogenic propellants /oxygen/hydrogen/ for reaction control systems. Volume 2 - Experimental evaluations and demonstration Final report
Evaluation and demonstration of cryogenic propellant /oxygen-hydrogen/ use for spacecraft reaction control system
Demonstration of a pulsing liquid hydrogen/liquid oxygen thruster
Successful operation of a pulsing liquid hydrogen/liquid oxygen attitude control propulsion system thruster (1250 lb sub f) at cryogenic inlet conditions while maintaining high specific impulse and low impulse bit capability was demonstrated. Significant technical advances and departures from conventional injector design practices were necessary in order to achieve an operable thruster. These advancements were achieved through extensive analyses of heat transfer and injector manifold priming that established the baseline feasibility for an actual hardware design. The primary subject of this paper is the result of experimental evaluation of the 45 R hydrogen inlet temperature injector concept. The test matrix consisted of 66 hot firing tests in a heat sink thrust chamber
Trailing Edge Noise Reduction by Passive and Active Flow Controls
This paper presents the results on the use of porous metal foams (passive control) and dielectric barrier surface plasma actuations (active control) for the reduction of vortex shedding tonal noises from the nonflat plate type trailing edge serration in a NACA0012 airfoil previously discussed in Chong et al. (AIAA J. Vol. 51, 2013, pp. 2665-2677). The use of porous metal foams to fill the interstices between adjacent members of the sawtooth can almost completely suppress the vortex shedding tonal noise, whilst the serration effect on the broadband noise reduction is retained. This concept will promote the nonflat plate type serrated trailing edge to become a genuine alternative to the conventional flat plate type serrated trailing edge, which is known to have drawbacks in the structural stability, aerodynamic performances and implementation issues. For the plasma actuators, configuration which produces electric wind in a tangential direction is found to be not very effective in suppressing the vortices emanated from the serration blunt root. On the other hand, for the plasma configuration which produces electric wind in a vertical direction, good level of vortex shedding tonal noise reduction has been demonstrated. However, the self noise produced by the plasma actuators negates the noise benefits on the tonal noise reduction. This characteristic illustrates the need to further develop the plasma actuators in a two pronged approach. First is to increase the electric wind speed, thereby allowing the plasma actuators to be used in a higher free jet velocity which naturally produces a larger level of jet noise. Second, the self noise radiated by the plasma actuators should be reduced
Coherent Dipole Modes for Multiple Interaction Regions
In the Large Hadron Collider (LHC) two proton beams of similar strength will collide at several interaction points. For a single interaction point it is known that the head-on collision of two equally strong beams with the same betatron tune, excites two coherent dipole modes whose frequencies are different from the frequencies of oscillation of individual particles in the beam. Because of this frequency difference Landau damping does not act on the dipole modes and the beams can be unstable. In this paper we extend these studies to several interaction points and explore the possibility of cancellation of the dipole coherent modes by carefully adjusting the phase difference between the beams from one collision to the next. We also study the collision of the two beams with LHC optics V 6.1. Special attention should be paid to coherent resonances that are excited due to local phase advance correlations. It will be shown also that a tune split of 0.03 between the two beams suppresses these coherent dipole modes
Single-cell western blotting.
To measure cell-to-cell variation in protein-mediated functions, we developed an approach to conduct ∼10(3) concurrent single-cell western blots (scWesterns) in ∼4 h. A microscope slide supporting a 30-μm-thick photoactive polyacrylamide gel enables western blotting: settling of single cells into microwells, lysis in situ, gel electrophoresis, photoinitiated blotting to immobilize proteins and antibody probing. We applied this scWestern method to monitor single-cell differentiation of rat neural stem cells and responses to mitogen stimulation. The scWestern quantified target proteins even with off-target antibody binding, multiplexed to 11 protein targets per single cell with detection thresholds of <30,000 molecules, and supported analyses of low starting cell numbers (∼200) when integrated with FACS. The scWestern overcomes limitations of antibody fidelity and sensitivity in other single-cell protein analysis methods and constitutes a versatile tool for the study of complex cell populations at single-cell resolution
Photonic chip based optical frequency comb using soliton induced Cherenkov radiation
By continuous wave pumping of a dispersion engineered, planar silicon nitride
microresonator, continuously circulating, sub-30fs short temporal dissipative
solitons are generated, that correspond to pulses of 6 optical cycles and
constitute a coherent optical frequency comb in the spectral domain. Emission
of soliton induced Cherenkov radiation caused by higher order dispersion
broadens the spectral bandwidth to 2/3 of an octave, sufficient for self
referencing, in excellent agreement with recent theoretical predictions and the
broadest coherent microresonator frequency comb generated to date. In a further
step, this frequency comb is fully phase stabilized. The ability to preserve
coherence over a broad spectral bandwidth using soliton induced Cherenkov
radiation marks a critical milestone in the development of planar optical
frequency combs, enabling on one hand application in e.g. coherent
communications, broadband dual comb spectroscopy and Raman spectral imaging,
while on the other hand significantly relaxing dispersion requirements for
broadband microresonator frequency combs and providing a path for their
generation in the visible and UV. Our results underscore the utility and
effectiveness of planar microresonator frequency comb technology, that offers
the potential to make frequency metrology accessible beyond specialized
laboratories.Comment: Changes: - Added data (new Fig.4) on the first full phase
stabilization of a dissipative Kerr soliton (or dissipative cavity soliton)
in a microresonator - Extended Fig. 8 in the SI - Introduced nomenclature of
dissipative Kerr solitons - Minor other change
- …
