174 research outputs found

    Asymmetric Berry-Phase Interference Patterns in a Single-Molecule Magnet

    Full text link
    A Mn4 single-molecule magnet displays asymmetric Berry-phase interference patterns in the transverse-field (HT) dependence of the magnetization tunneling probability when a longitudinal field (HL) is present, contrary to symmetric patterns observed for HL=0. Reversal of HL results in a reflection of the transverse-field asymmetry about HT=0, as expected on the basis of the time-reversal invariance of the spin-orbit Hamiltonian which is responsible for the tunneling oscillations. A fascinating motion of Berry-phase minima within the transverse-field magnitude-direction phase space results from a competition between noncollinear magnetoanisotropy tensors at the two distinct Mn sites.Comment: 4 double-column page

    Nonlinear Krylov Acceleration Applied to a Discrete Ordinates Formulation of the k-Eigenvalue Problem

    Full text link
    We compare variants of Anderson Mixing with the Jacobian-Free Newton-Krylov and Broyden methods applied to an instance of the k-eigenvalue formulation of the linear Boltzmann transport equation. We present evidence that one variant of Anderson Mixing finds solutions in the fewest number of iterations. We examine and strengthen theoretical results of Anderson Mixing applied to linear problems.Comment: This final revision includes results of the C5G7-MOX problem; Nonlinear Krylov Acceleration Applied to a Discrete Ordinates Formulation of the k-Eigenvalue Problem, Accepted by the Journal of Computational Physics December 201

    Molecular basis of association of receptor activity-modifying protein 3 with the family B G protein-coupled secretin receptor

    Get PDF
    The three receptor activity-modifying proteins (RAMPs) have been recognized as being important for the trafficking and function of a subset of family B G protein-coupled receptors, although the structural basis for this has not been well established. In the current work, we use morphological fluorescence techniques, bioluminescence resonance energy transfer, and bimolecular fluorescence complementation to demonstrate that the secretin receptor associates specifically with RAMP3, but not with RAMP1 or RAMP2. We use truncation constructs, peptide competition experiments, and chimeric secretin-GLP1 receptor constructs to establish that this association is structurally specific, dependent on the intramembranous region of the RAMP and TM6 and TM7 of this receptor. There were no observed changes in secretin-stimulated cAMP, intracellular calcium, ERK1/2 phosphorylation, or receptor internalization in receptor-bearing COS or CHO-K1 cells in the presence or absence of exogenous RAMP transfection, although the secretin receptor trafficks normally to the cell surface in these cells in a RAMP-independent manner, resulting in both free and RAMP-associated receptor on the cell surface. RAMP3 association with this receptor was shown to be capable of rescuing a receptor mutant (G241C) that is normally trapped intracellularly in the biosynthetic machinery. Similarly, secretin receptor expression had functional effects on adrenomedullin activity, with increasing secretin receptor expression competing for RAMP3 association with the calcitonin receptor-like receptor to yield a functional adrenomedullin receptor. These data provide important new insights into the structural basis for RAMP3 interaction with a family B G protein-coupled receptor, potentially providing a highly selective target for drug action. This may be representative of similar interactions between other members of this receptor family and RAMP proteins

    Structure of a highly conserved domain of rock1 required for shroom-mediated regulation of cell morphology

    Get PDF
    Rho-associated coiled coil containing protein kinase (Rho-kinase or Rock) is a well-defined determinant of actin organization and dynamics in most animal cells characterized to date. One of the primary effectors of Rock is non-muscle myosin II. Activation of Rock results in increased contractility of myosin II and subsequent changes in actin architecture and cell morphology. The regulation of Rock is thought to occur via autoinhibition of the kinase domain via intramolecular interactions between the N-terminus and the C-terminus of the kinase. This autoinhibited state can be relieved via proteolytic cleavage, binding of lipids to a Pleckstrin Homology domain near the C-terminus, or binding of GTP-bound RhoA to the central coiled-coil region of Rock. Recent work has identified the Shroom family of proteins as an additional regulator of Rock either at the level of cellular distribution or catalytic activity or both. The Shroom-Rock complex is conserved in most animals and is essential for the formation of the neural tube, eye, and gut in vertebrates. To address the mechanism by which Shroom and Rock interact, we have solved the structure of the coiled-coil region of Rock that binds to Shroom proteins. Consistent with other observations, the Shroom binding domain is a parallel coiled-coil dimer. Using biochemical approaches, we have identified a large patch of residues that contribute to Shrm binding. Their orientation suggests that there may be two independent Shrm binding sites on opposing faces of the coiled-coil region of Rock. Finally, we show that the binding surface is essential for Rock colocalization with Shroom and for Shroom-mediated changes in cell morphology. © 2013 Mohan et al

    Parallel algebraic multilevel Schwarz preconditioners for a class of elliptic PDE systems

    Full text link
    Algebraic multilevel preconditioners for algebraic problems arising from the discretization of a class of systems of coupled elliptic partial differential equations (PDEs) are presented. These preconditioners are based on modifications of Schwarz methods and of the smoothed aggregation technique, where the coarsening strategy and the restriction and prolongation operators are defined using a point-based approach with a primary matrix corresponding to a single PDE. The preconditioners are implemented in a parallel computing framework and are tested on two representative PDE systems. The results of the numerical experiments show the effectiveness and the scalability of the proposed methods. A convergence theory for the twolevel case is presented

    Towards an Exascale Enabled Sparse Solver Repository

    Get PDF
    As we approach the Exascale computing era, disruptive changes in the software landscape are required to tackle the challenges posed by manycore CPUs and accelerators. We discuss the development of a new `Exascale enabled' sparse solver repository (the ESSR) that addresses these challenges---from fundamental design considerations and development processes to actual implementations of some prototypical iterative schemes for computing eigenvalues of sparse matrices. Key features of the ESSR include holistic performance engineering, tight integration between software layers and mechanisms to mitigate hardware failures

    Pencegahan infeksi & praktik yang aman

    No full text
    Buku ini memuat rekomendasi berdasarkan riset terbaru tentang pencegahan infeksi dan praktik yang aman. Informasi yang termuat dalam buku in memberikan perawat dan tenaga kesehatan pedoman mengenai pencegahan transmisi organisme selama melakukan prosedur rutin; untuk menangani tenaga kesehatan yang terpajan terhadap penyakit infeksi; dan untuk menentukan kapan tenaga kesehatan dinon-aktifkan dari perawat pasien.x, 396 hlm.: ilus.; 21 c
    • …
    corecore