View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Institute of Transport Research:Publications

Towards an Exascale Enabled Sparse Solver
Repository

Jonas Thies, Martin Galgon, Faisal Shahzad, Andreas Alvermann, Moritz Kreutzer,
Andreas Pieper, Melven Rohrig-Zollner, Achim Basermann, Holger Fehske, Georg Hager,
Bruno Lang, and Gerhard Wellein

Abstract As we approach the Exascale computing era, disruptive changes in the software
landscape are required to tackle the challenges posed by manycore CPUs and accelerators.
We discuss the development of a new ‘Exascale enabled’ sparse solver repository (the ESSR)
that addresses these challenges—from fundamental design considerations and development
processes to actual implementations of some prototypical iterative schemes for computing
eigenvalues of sparse matrices. Key features of the ESSR include holistic performance en-
gineering, tight integration between software layers and mechanisms to mitigate hardware
failures.

1 Introduction

It is widely accepted that the step from Peta- to Exascale is qualitatively different from
previous advances in high performance computing and therefore poses urgent questions.
Considering applications that need these vast computing resources, which algorithms expose
such massive parallelism? What will the next generations of supercomputers look like, and
how can we write sustainable yet efficient software for them? The ESSEX project ! has
developed the ‘Exascale enabled Sparse Solver Repository’ (ESSR) over the past three years,

Jonas Thies, Melven Rohrig-Zollner and Achim Basermann
German Aerospace Center (DLR), Simulation and Software Technology, Cologne, Germany.

Martin Galgon and Bruno Lang
University of Wuppertal, School of Mathematics and Natural Sciences, Wuppertal, Germany.

Andreas Alvermann, Andreas Pieper and Holger Fehske
University of Greifswald, Institute of Physics, Greifswald, Germany.

Moritz Kreutzer, Faisal Shahzad, Georg Hager and Gerhard Wellein
Erlangen Regional Computing Center, Erlangen, Germany

! Equipping Sparse Solvers for the Exascale, http://blogs.fau.de/essex, funded by the priority
program “Software for Exascale Computing” (SPPEXA) of the German Research Foundation (DFG)

https://core.ac.uk/display/31021087?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 J. Thies et al

and in this paper we want to share our experiences and summarize our results in order to
contribute to answering these questions.

The applications we study come from quantum physics and material science, and are
directly or indirectly related to solving the Schrodinger equation. The Hamiltonian of the
systems studied can be represented as a (very) large and sparse matrix, and the numerical
task is to solve sparse eigenvalue problems in various flavors. The software we develop is
intended as a blueprint for other applications of sparse linear algebra.

In the next few years, we expect no radical change in the architecture of supercomputers,
so that a scaled up version of current Petascale systems is used as target architecture for the
ESSR. That is, a distributed memory cluster of (possibly heterogeneous) nodes. On the other
hand, node-level programming will become much more challenging because of the strong
increase in node level parallelism and complexity?. Due to the increasing node count, we do
anticipate a much shorter mean time to failure (MTTF) on the full system scale, which has
to be addressed for large simulations using substantial parts of an Exascale system.

A key challenge in the efficient implementation of sparse matrix algorithms is the ‘band-
width bottleneck’, the fact that in most modern architectures, the amount of data that can
be loaded per floating point operation is continually decreasing. To hide this gap, cache sys-
tems of increasing complexity and non-uniform cache/memory hierarchies are used. Another
issue is the relative increase of the latency of global reduction/synchronization operations,
which are central to many numerical schemes. In the ESSR we address these problems using
block algorithms with tailored kernels (see also [1]) and communication hiding.

Three overarching principles guide the design of the ESSR: disruptive changes of data
structures for node-level efficiency, holistic performance engineering to avoid losses on var-
ious hardware or software levels to accumulate, and user-level fault tolerance schemes to
keep the overhead for guaranteeing stable runs as low as possible.

The various layers of the ESSR (application, algorithms and building blocks) were co-
developed ‘from scratch’ within the past three years. This rapid process was only possible
with a comprehensive software engineering approach, which we will describe in this paper.
We use the term ‘repository’ rather than ‘library’ because of the young age of our effort. In
the future, the ESSR components will be integrated to form a complete software stack for
extreme scale sparse eigenvalue computations and applications.

Related work. A large number of decisions has to be made when designing basic linear
algebra data structures such as classes for sparse matrices, (block) vectors or dense matrices.
On the other hand, iterative algorithms may remain largely oblivious of these implementa-
tion details (e.g. the storage scheme for sparse matrices, the parallelization techniques used).
In the past, iterative solver libraries were therefore often based on reverse communication
interfaces (RCI, see, e.g., (P)ARPACK [2] or FEAST [3]), or simple callback functions that
allowed the user only to provide the result of a matrix-vector product and possibly a pre-
conditioning operation (as in PRIMME [4]). In such approaches, the user is bound to the
parallelization technique prescribed by the solver library (i.e. pure MPI in the examples
above), and the solver library can not exploit techniques like kernel fusion or overlapping
of communication and computation across operations. Another library implementing sparse

2 see, e.g,https://www.olcf.ornl.gov/summit/

Towards an Exascale Enabled Sparse Solver Repository 3

eigenvalue solvers is SLEPc [5]. Here the user has to adapt to the data structures of the larger
software framework PETSc [6].

A more flexible approach is the concept of an interface layer in the Trilinos library
Anasazi [7]. Solvers in this C++ library are templated on scalar data type and the ‘multi-
vector’ and operator types. For each kernel library providing these objects, an ‘adapter’ has
to be written. Apart from the operator application (which may wrap a sparse matrix-vector
product), the kernel library implements a multi-vector class with certain functionality. For
an overview of Trilinos, see [8,9]. Our own approach is to use an interface layer which is
slightly more extensive than the one in Anasazi, but puts less constraints on the underlying
data structures (see Sect. 3.4).

The predicted range of MTTF for Exascale machines (between hours and minutes [10])
necessitates the inclusion of fault tolerance capabilities in our applications, as they fall in
the category of long running large jobs. The program can face various failures during its
run, e.g. hardware faults, soft errors, Byzantine failures, software bugs, etc. [11]. According
to [12], a large fraction of failures can be attributed to CPU and memory related issues which
eventually lead to complete process failures. Such failures define the fault tolerance scope in
this work.

Document structure. We start out by describing the basic software architecture of the
ESSR in Sect. 2, and a process that allows the concurrent development of sparse solvers and
the building blocks they need to achieve optimal performance. Section 3 gives an overview
of the software components available in the ESSR. In Sect. 4, three classes of algorithms
studied in the ESSEX project are briefly discussed. The objective here is neither to present
new algorithmic features or performance results, nor to study any particular application. In-
stead, we want to summarize the optimization techniques and implementation details we
identified while developing these solvers. The fault tolerance capabilities explored in our
applications are described in Sect. 5. Section 6 summarizes the paper and gives an outlook
on future developments surrounding the ESSR.

2 ESSR Architecture and Development Process

It is a substantial effort to implement a scalable sparse solver library ‘from scratch’. In this
section we describe the architecture and development cycle of a set of tightly integrated
software layers, that together form the ‘Exascale enabled Sparse Solver Repository’, ESSR.
The actual implementation in terms of software packages is detailed further in Sect. 3.

2.1 Software Architecture

The ESSR consists of three main parts, depicted in Fig. 1: an application layer, the computa-
tional core and a vertical integration pillar. A fourth part is an extensive test suite, not shown
here.

4 J. Thies et al

vertical integration

algorithms —
&
application =
solver templates §
eigenproblem l I preconditioning RERE e
(5]
| FT strategies 8
=
1 <
«abstrdction» g
~~~~~ A e | |-
Q
. £] =,
computational core ]
adapter P— 2
C: «interface» s
’ sparseMat ‘ ’ mVec ‘ ’ sdMat ‘ kernel interface 1< |

Fig. 1 ESSR software architecture

The computational core (or kernel library) has the task of providing highly optimized im-
plementations of the kernels required by the algorithms and applications we study. It hides
implementation details such as SIMD instructions, NUMA aware memory management and
MPI communication from the other layers. It is a ‘component’ in the sense that it could
be replaced by another implementation if the software is ported to radically different hard-
ware, or if new applications with different requirements come up. The basic data structures
it provides are classes for sparse matrices (sparseMats), tall and very skinny matrices (or
‘multi-vectors’, mVecs) and small and dense matrices (sdMat s).

The vertical integration pillar is based on a clear interface to the computational core, sub-
sequently referred to as ‘kernel interface’. It defines the basic data structures and operations
that the computational core has to provide. The ‘algo core’ layer implements common func-
tionality useful for various high level algorithms. Examples include block orthogonalization,
evaluating matrix polynomials and extracting Ritz values from a subspace. On top of the
kernel interface and core functionality, iterative algorithms are implemented. Fault tolerance
strategies are built into algorithms, and common concepts here are again implemented in the
algorithmic core layer. The vertical integration pillar is designed to enable holistic perfor-
mance engineering, as will be discussed below.

The application layer defines an eigenvalue problem and uses an algorithm to solve it. To
set up the problem and pre-/postprocess the results, it may either use the simplified kernel
interface or the full functionality of the computational core library. The second component of
the application layer is an optional preconditioner, i.e. any deterministic linear operator used
to accelerate the solution of linear systems arising in an eigenvalue computation. We placed
this important building block into the application layer because the construction of a suitable
preconditioner may be problem dependent, especially in quantum physics, where ‘black box’
AMG or ILU methods are generally not applicable. The implementation of a preconditioning
technique will typically work directly on the data structures of the computational core. While
the vertical pillar is connected to the computational core only via a clear interface, the degree



Towards an Exascale Enabled Sparse Solver Repository 5

to which an application can use another kernel library depends on its implementation and
need for specific preconditioners and pre-/postprocessing. Simple applications that only need
matrix construction (or I/O) and standard operations can stay independent of the underlying
implementation by using the kernel interface as the lowest level.

Tightly connected to the vertical pillar is an extensive test framework (cf. Sect. 3.6), with a
continuous integration process to ensure software quality. The largest number of tests targets
the computational core, through the kernel interface. The algorithmic core is tested using
synthetic cases (integration tests), and system tests (numerical test cases for the algorithm
layer) are provided by matrix collections/generators and the application layer.

2.2 Concurrent Development of all Layers

The introduction of the kernel interface enables the use of established libraries while devel-
oping/implementing iterative methods. The core layers can thus be developed in parallel to
the algorithms layer. The kernels required are defined dynamically during the development
process and implemented in a test-driven process in the computational core, see Fig. 2. In a
similar workflow, common functionality used in several solvers is identified and abstracted
into the ‘algo core’ layer, where a numerically robust and fully optimized implementation
is brought forth while algorithm development continues at a higher level. An example is the
development of a communication optimal and robust block orthogonalization scheme while
implementing block Jacobi-Davidson (Sect. 4.3) based on a simple yet robust (iterated) mod-
ified Gram-Schmidt process.

new algorithm

- - - o - T ="
Algorithms add , optimize
unit tests . _ numerics
i -
Comp. Core | robust '—» I(I)nlt)ilglri];irg _ | evaluate overall
. l ' ptum performance
_ _ kernels _ ! version

ooo established kernel library

| optimized kernel library

Fig. 2 Test-driven co-development of optimized algorithms in the ESSR



6 J. Thies et al

2.3 Integration of Performance Engineering

While developing an iterative solver, all performance critical operations are identified and
added to the kernel interface. As the number of relevant kernels is moderate, a combination
of performance models and dedicated benchmarks can be used to ensure their near optimal
performance. Many of these operations (such as the sparse matrix-vector multiplication, sp-
MVM, or operations on mVecs), are bounded by the main memory bandwidth, such that
the roofline model [13] gives a good indication of the quality of the implementation. To
understand the performance of a complete algorithm, code instrumentation for performance
analysis tools is used. This may reveal, e.g., overhead of thread synchronization or effects of
non-uniform memory access (NUMA) which may not occur in isolated benchmarks. More
details on how this concept is implemented can be found in Sect. 3.6.

Our primary focus here is node-level performance. The changes in CPU architecture are
currently more dramatic than those concerning node interconnection, and any losses at the
node level scale with the number of nodes in a supercomputer.

2.4 Fault Tolerance Strategy

The strategy followed in the ESSR to achieve fault tolerance w.r.t. hardware failures can
be classified as an application-level checkpoint/restart (C/R) method. In this approach, al-
gorithm specific knowledge is exploited to store the minimum amount of data needed for
restarting the computation. A highly optimized implementation of this approach (using e.g.
asynchronous checkpointing and neighbor-level checkpoints) promises a low overhead for
our long running iterative schemes on many nodes.

Due to the early development stage of fault tolerant communication libraries [14], our
strategy is to evaluate various technical solutions in simple use cases before condensing
them into a common feature of the ESSR solvers and applications in the ‘algo core’ layer.
Section 5 gives an overview of our work in this area.

3 ESSR Software Landscape

The conceptual design discussed in the previous section is implemented in a collection of
compatible software packages, which are publicly accessible under a BSD open source li-
cense’. Before discussing the software structure further, we will comment on the target com-
puter architecture for the software.

3see http://bitbucket.org/essex



Towards an Exascale Enabled Sparse Solver Repository 7

3.1 Hardware and Execution Models Supported

Exascale computers are not available to date, and a competitive ‘race of flops’ is going on to
develop this new generation of supercomputers. Based on the developments in the TOP500
list [15] over the past few years, we decided to develop software targeting machines that
consist of many nodes with distributed memory. A node features several multi- or manycore
CPUs with non uniform access to caches and main memory, and ‘accelerator’ hardware, e.g.
multiple GPUs. At the lowest level, data parallelism is exploited by the hardware through
SIMD/SIMT like techniques, compelling choices in data structures and low level implemen-
tation. Typical sparse matrix algorithms will continue to be memory-bound on these devices

In this environment we employ the following execution model. Numerical algorithms are
implemented as a sequence of function calls, executed transparently on a parallel heteroge-
neous machine (SPMD model). A distributed memory communication protocol (e.g. MPI) is
used between processes running on complete nodes or parts of nodes of the cluster. Within a
function we allow arbitrary multithreading techniques for flexible node utilization. The exe-
cution of functions may be interleaved using ‘tasks’ which use only a part of the resources
available to the process. Data transfers between host CPU and accelerator devices must be
handled explicitly by the computational algorithm between function calls where necessary
(the underlying kernels do not ‘know’ if the CPU or device memory is up to date).

3.2 ESSR Toolkits and Functionality

The ESSR is implemented in a number of co-developed software packages, also called roolk-
its. These toolkits do not necessarily implement one part of the architecture (Fig. 1) each.
Rather, each partner in the ESSEX project has the responsibility for one of the toolkits,
whereas the responsibility for the conceptual ESSR parts may be shared among several
project partners. In the future, the repository will evolve into a set of libraries providing
state-of-the-art, highly scalable and fault tolerant eigensolvers. This may lead to a redistri-
bution of functionality according to the architecture depicted in Fig. 1.
The four toolkits are briefly characterized as follows:

e ESSEX-Physics, a quantum physics toolkit defining applications that we want to solve
using the ESSR. It provides scalable sparse matrices from real-world applications and
polynomial eigensolvers (see Sects. 3.3 and 4.1).

e GHOST (General, Hybrid and Optimized Sparse Toolkit) implements basic building
blocks with a focus on optimal performance on heterogeneous supercomputers. This de-
sign goal is achieved by consequent application of performance engineering techniques.
GHOST implements the ‘computational core’ of the ESSR in single or double precision,
and in real or complex arithmetic [1, 16].

e PHIST (Pipelined Hybrid-parallel Iterative Solver Toolkit) implements the vertical in-
tegration pillar of Fig. 1, and adapters for several kernel libraries. It also hosts the test
framework, and contributes Jacobi-Davidson type eigensolvers and Krylov methods for



8 J. Thies et al

linear systems to the algorithms layer. To provide a more diverse spectrum of methods,
we also included adapters for GHOST to the Trilinos libraries Anasazi and Belos.

e BEAST (Beyond fEAST) extends the algorithms layer of the ESSR by innovative projec-
tion based eigensolvers which take up the idea of the contour integration based FEAST
method [3] (see Sect. 4.2).

We will now describe some of the features of the ESSR, with references to the toolkit
where they can be found. The eigensolvers are described in more detail in Sect. 4.

3.3 Applications

Following the overall philosophy of the SPPEXA priority program®, our development of
the ESSR components is closely guided by—but not restricted to—the intended application
range in quantum physics and chemistry. Three different types of eigenvalue problems arise
for the large sparse symmetric (or Hermitian) matrices derived from the Schrodinger equa-
tion. The study of equilibrium properties, e.g., of the electronic states in a certain material,
requires computation of either a few extremal eigenvalues (of the order 10-100) or many in-
terior eigenvalues (100-1000) with the Jacobi-Davidson algorithm or BEAST, respectively.
On the other hand, effectively all the eigenvalues contribute to the dynamic properties of
highly excited or driven systems out of equilibrium, and expansion techniques such as the
kernel polynomial method (KPM) and Chebyshev time propagation (ChebTP) come into
play. These algorithms and their implementation are briefly discussed in Sect. 4. Thus, our
target applications require solution of the entire range of large sparse symmetric eigenvalue
problems.

Similarly, a variety of matrices occur in the applications: While stencil- and band-like
matrices are characteristic for graphene and topological insulators, the tensor structure of
quantum mechanical Hilbert space leads to intricate sparsity patterns with long thin subdi-
agonals or scattered small subblocks for correlated many-particle quantum systems. Also,
spectral properties of the matrices differ widely, which allows for algorithmic developments
and thorough testing without losing contact to the real application. For example, the ap-
pearance of a pseudo-gap in the density of states for topological insulators can be exploited
for interior eigenvalue computations with polynomial filter functions [17]. Scalable matrix
generation routines are included in the ESSEX-Physics library for correlated many-particle
systems and new topological materials, all of which are research problems of current inter-
est.

3.4 Kernel Interface

The algorithms summarized in Sect. 4 can be implemented with the three basic data struc-
tures introduced in Sect. 2, sparseMats, mVecs and sdMat s. To maintain flexibility, we

4see http://www.sppexa.de/



Towards an Exascale Enabled Sparse Solver Repository 9

added a fourth, an abstract linear operator type (LinearOp), which may be used to provide,
e.g., preconditioning techniques or implement matrix-free methods. Inspired by the Petra ob-
ject model employed by Trilinos [8], we also abstracted data distribution into a map object
and inter-process communication into a comm object. Another Petra concept that is useful
when implementing iterative solvers is a ‘view’ of (part of) an mVec or sdMat. A view is
a light-weight object that only has meta data and provides (read and/or write) access to the
elements of the ‘viewed’ object without copying them. Thus it is, e.g., possible to apply an
operator or sparse matrix to selected columns of an mvec.

As mentioned in Sect. 1, the Anasazi interface layer resolves the problems of earlier tech-
niques by allowing the sparse matrix and block vector implementations to be co-designed
with matching parallelization techniques and data layouts. We adapted this idea to our needs,
in PHIST, with the following main differences:

C interface. Having to provide a C++ adapter may be a hassle for e.g. Fortran program-
mers. We restrict ourselves to four scalar data types (ST), single or double, real or complex,
which can be implemented optionally. For each ST, a set of plain C functions has to be
provided, which accept objects as void pointers. Errors and flags are passed via the last
(int ) argument, similar to the MPI interface. This minimalistic interface allows maximum
flexibility for users of PHIST and providers of kernel libraries alike. The lack of type safety
introduced by passing around objects as void~ is alleviated by the test framework discussed
in Sect. 3.6.

sdMat. We require the kernel library to provide this object to increase flexibility. For in-
stance, an sdMat may be replicated on host CPU and GPU, or it may be stored in higher
precision to increase the numerical stability of reduction operations.

View concepts. Allowing custom sdMat s, we also require views of contiguous rows and
columns in an sdMat. On the other hand, we only require views of contiguous and increas-
ing columns of an mVec. This makes it easier to implement mVecs in row-major order-
ing for better performance [18]. Strided memory access leads to a significant performance
penalty in that case, and restricting the interface therefore gives more uniform performance
of the view objects supported.

Explicit data transfers for accelerators. For compute platforms that have both a host pro-
cessor and one or more accelerators, we support the data parallel execution model imple-
mented in GHOST [16]. At least one MPI process is used for each component of a heteroge-
neous node, and a ‘GPU process’ has a management thread running on the host CPU. Special
kernel interface functions exist to transfer the data of sdMat s between host and device.

3.5 Computational Core

The mathematical simplicity of the objects and functions required by the kernel interface is
misleading. Let us consider the operation C = VI'W,C € R™* vV € R W e R™_If this
operation is implemented using OpenMP inside each MPI process and Intel(R) AVX SIMD
instructions, the data in the objects must be contiguous, correctly aligned and padded, which



10 J. Thies et al

may not be the case if V,W and/or C are views of some parts of larger objects. The reduction
operation must produce consistent results on all MPI processes, and if accelerators like GPUs
are involved, data transfers must be managed explicitly. The constraints on data layout also
hold for efficient GPU processing. All of these complexities are hidden in the ESSR library
GHOST [16]. Automatically generated kernels are selected dynamically depending on data
alignment, block size and CPU type. Shared memory parallelism on CPUs and the Intel(R)
Xeon Phi is implemented using OpenMP, and Nvidia GPUs are supported by providing
optimized CUDA kernels.

Another important component of GHOST is a lightweight, general purpose tasking mech-
anism that plays well within the standard data parallel execution model of ‘MPI+X’. It is used
in the ESSR for overlapping communication with computation, asynchronous checkpointing
etc. The PHIST library provides macros to simplify the use of this tool when implementing
an algorithm.

Apart from GHOST, PHIST currently has adapters for the Trilinos libraries Epetra and
Tpetra. Builtin Fortran/C99 kernels make PHIST self-contained in principle and are used for
performance engineered prototypes of functionality not yet available in GHOST.

3.6 Verifying Software Correctness and Performance

Correctness tests. The number of possible execution paths in GHOST is huge, because it
uses automatically generated high-end kernels for fixed block sizes, allows mixing of row-
and column-major dense matrices and real and complex arithmetic, etc. In order to keep the
effort of testing the building blocks in ESSEX at a reasonable level, we therefore restrict
ourselves to testing via the kernel interface.

The test framework in PHIST is based on Google Test®, with modifications to ensure cor-
rect behavior in a hybrid parallel setting with MPI+X. These modifications include broad-
casting test errors to all MPI processes and assertions to verify that certain data is identical on
all processes. The main point here is to decide what type of errors the tests should be able to
detect, and under which conditions they should work correctly. For example, some commu-
nication errors with MPI cannot be detected by the test framework as it relies on MPI itself.
Here one may run the tests in simplified settings (single/multiple thread(s), single/multiple
MPI rank(s), GPU only etc.) to test each layer of parallelism separately. Various tools can
support this kind of testing, e.g., the thread and address sanitizer included in recent versions
of GCC®, the MPI checker MUST 7 or CUDA-MEMCHECK®.

Tests are automatically generated from single source files for different block sizes, vector
lengths, and data types, and for views and standard objects where appropriate. They are
executed in nightly builds for different configurations, which leads to a total of currently
about 80,000 tests for each kernel library, compiler and MPI version tested. We use the

>https://github.com/google/googletest
®https://github.org/google/sanitizers
"https://doc.itc.rwth-aachen.de/display/CCP/Project+MUST
8 http://docs.nvidia.com/cuda/cuda-memcheck/



Towards an Exascale Enabled Sparse Solver Repository 11

continuous integration tool Jenkins® to obtain an overview of the results. Comparison with
the comparatively stable Epetra and Tpetra implementations increases the confidence in the
correctness of the tests themselves.

Performance testing. Our adapters for the kernel interface and the functions of the core
and algorithmic layers are instrumented to provide timing information and/or markers for the
Likwid performance monitoring tool [19]. Another option that can be turned on at compile
time is to include a simple performance model for memory bounded kernels. In this case,
a small benchmark of the memory bandwidth is run and the percentage of the roofline [13]
performance achieved by each kernel function is printed at the end of a run.

There are two ‘modes’ of performance testing: one incorporates the actual data layout in
memory and thus helps to verify that the underlying kernel library achieves the predicted per-
formance for each operation, whether it involves views or not. The other mode only considers
the amount of data. This reveals possible performance flaws in the design or implementation
of algorithms. For example, if the main operations are performed with a single column view
of a row major multi-vector of block size 2, less than 50% of the roofline performance may
be achieved on cache-based architectures.

4 Algorithms Implemented in the ESSR

In this section we want to give a broad overview of the algorithms studied in the ESSEX
project, and summarize the lessons learned while developing their highly optimized imple-
mentations in the ESSR. For more details, numerical experiments and performance results
on massively parallel systems, we refer to the publications cited below.

4.1 Algorithms Based on Chebyshev Polynomials

Algorithms based on the evaluation of polynomial matrix functions are a basic ESSR com-
ponent. They are represented by the kernel polynomial method (KPM) [20] for spectral func-
tions and eigenvalue densities, Chebyshev time propagation (ChebTP) [21,22] for matrix ex-
ponentials exp[tA], and Chebysheyv filter diagonalization (ChebFD) [17] for the computation
of interior eigenvalues. The latter is available through the BEAST-P variant, see Sect. 4.2.

In contrast to, e.g., sparse factorizations or preconditioning that require explicit access
to the matrix elements, polynomial algorithms address the matrix in question only through
spMVM. Therefore, they are well suited for situations where the former techniques do not
work, or where the matrix is not stored explicitly but only constructed ‘on-the-fly’ in the
spMVM routine. While from the mathematical point of view polynomial algorithms are
inferior to algorithms based on rational matrix functions, they are often the only alternative
for extremely large matrices.

https://jenkins—ci.org



12 J. Thies et al

The common idea behind KPM, ChebTP, and ChebFD is the expansion of a function
f(2) =X gcnpn(z) into a series of polynomials p,(z), especially the Chebyshev polyno-
mials 7,(z) which are often the most favorable choice for numerical algorithms. The algo-
rithms come in two variants: KPM computes the expansion coefficients ¢, from scalar prod-
ucts (y, pn[A]x) in order to (re-)construct the function f(z), e.g., the eigenvalue density, while
ChebTP and ChebFD use given coefficients ¢, to accumulate a result vector y =Y, ¢, pn[A]x,
either for the matrix exponential y = exp[tA]x (ChebTP) or a subspace projection y = Px
(ChebFD). An important idea from approximation theory that features both in KPM and
ChebFD is the use of so-called kernel polynomials to improve convergence of the expan-
sion [17,20,23].

Algorithm 1 Polynomial matrix function evaluation

1 for k=1toM do > First two recurrence steps

2 ukI(Xl(A+ﬁ1]l)Xk > spmv ()
3 Wi = (A + Bal)uy + Paxg > spmv ()
4 X = CoXg + Cc1Uy + oWy >axpy & scal (ChebTP, ChebFD)
5 cék) =(y,Xt), c(lk) =(y,w), c(lk) = (y, Wg) > dot or gemm (KPM)
6 for n=3toN do > Remaining recurrence steps

for k=1toM do

swap (W, u) > swap pointers

) Wi = 0 (A + B 1) uy + %Wy > spmv ()

0 X = X + Wy > axpy (ChebTP, ChebFD)

11 cE,k) = (y,wx) > dot or gemm (KPM)

To achieve high execution speed with minimal memory requirements, the polynomials
pn(2) are computed from a two term recurrence

Xn+1 = an(A*Fﬁn]]-)xn*FYnxnfl (1)

for the vectors x, = pp[A]x, which gives the algorithmic core in Alg. 1 of KPM, ChebTP,
and ChebFD. Depending on which operations are used in lines 4/5 and 10/11, it serves two
different purposes: replace x; by f[A]x; (lines 4,10), or compute moments {cﬁ,k)} (lines 5,11).
Algorithm 1 computes the polynomials p,[A]x; for several vectors xj, ..., x) simultaneously,
as required in KPM and ChebFD. In addition to spMVM it uses only BLAS-1 vector op-
erations within the two loops over k (vector index) and n (polynomial degree). Owing to
this simplicity, the algorithmic core allows for effective performance engineering through
straightforward optimizations such as loop-fusion. A particularly rewarding step is the com-
bination of the individual spMVMs for k = 1,..., M into spMMVMs on block vectors, which
improves cache utilization due to less erratic memory access patterns. Row-major storage of
mVecs (as implemented in GHOST) is the key to reaping the full benefits of this optimiza-
tion [17,24]. With such node-level optimizations one can achieve decoupling of the algorith-
mic core performance from main memory bandwidth on modern CPU systems. Then, the
overall performance depends only on the distributed sp(M)MVMs, i.e., is bounded by the
inter node communication bandwidth and latency.



Towards an Exascale Enabled Sparse Solver Repository 13

Notice that Alg. 1 has no internal synchronization points, because neither the dot products
in lines 5/11 nor the vectors accumulated in lines 4/10 are used in the following iterations
steps. Global synchronization can be delayed until after the execution of the entire algorith-
mic core, and thus does not affect scalability.

Apart from KPM, Algorithm 1 is normally executed repeatedly. In ChebTP intermedi-
ate computations between different executions usually consist of a few xDOT operations,
and can be delegated to separate tasks. The results are not needed in the next iterations, and
(global) synchronization still is not required. In ChebFD, however, vectors have to be orthog-
onalized between subsequent executions of the algorithmic core. We use communication-
avoiding techniques such as TSQR [25] or SVQB [26] to mitigate the ensuing adverse effects
on performance.

The potential of the ESSR implementations of KPM, ChebTP, and ChebFD was demon-
strated in a series of papers [17,24,27]. With the fully heterogeneous CPU-GPU implementa-
tion of KPM [24] we computed the density of states of a matrix with dimension D = 6.5 x 10°
on 1024 hybrid nodes of the Piz Daint supercomputer'’. Performance engineering resulted in
a speed up of 3-5 at the single node level [27]. Recently, these computations were extended
to 4096 nodes (D = 10'9) and achieved 0.5 Pflop/s sustained performance [28], which corre-
sponds to 11% of LINPACK efficiency. With the ChebFD implementation we could compute
the 148 innermost eigenvalues of a matrix with dimension D = 10°, using 512 nodes of Su-
perMUC!! at 40 Tflop/s sustained performance [17]. With the full SuperMUC phase 2 we
will be able to obtain inner eigenvalues for matrix dimensions 1010, at an expected sustained
performance level of 250 Tflop/s.

The only remaining bottleneck for our polynomial algorithms is the performance of the
distributed sp(M)MVMs. In many quantum physics applications (see Sect. 3.3) the inter node
communication volume grows strongly with matrix dimension, and reduction of communi-
cation is the most crucial issue for scalability. For stencil type matrices, techniques such as
octree ordering are used [18]. For more complex sparsity patterns, GHOST allows sparse
matrix repartitioning by PT-Scotch [29]. Future versions of the ESSR will include scalable
matrix reordering techniques tailored to the application matrices.

4.2 Beyond FEAST: Projection Based Methods

Consider the (generalized) eigenvalue problem AX = ABX. FEAST [3] is a subspace it-
eration method to compute all eigenvalues inside a user-defined interval /5, and their corre-
sponding eigenvectors. In each step, a size-m search space Y is projected approximately onto
the desired invariant subspace, and a Rayleigh-Ritz procedure is used to compute approxi-
mate eigenpairs. The computed eigenvectors serve as the new refined search space and the
scheme is iterated until convergence. The projection is achieved by (numerical) integration
of the resolvent (zB —A)~!B over a contour in the complex plane that encloses I;, but no
other eigenvalues of (A, B); see [3] for more details and [30] for recent variants. The ESSEX

O http://www.cscs.ch/computers/pizdaint/index.html
Whttps://www.lrz.de/services/compute/supermuc/



14 J. Thies et al

project has contributed to improving FEAST in two ways: by proposing techniques for solv-
ing or avoiding the linear systems that arise, and by improving robustness and performance
of the algorithmic scheme.

Linear systems. Our intended use of the FEAST adaptations in BEAST is computing up
to 1000 interior eigenpairs of very large and sparse Hermitian matrices. This use case is
not well-supported by other FEAST implementations as they typically rely on direct sparse
solvers for the linear systems that arise. We use two strategies to overcome this problem:
(1) a robust and scalable iterative solver for the linear systems in contour integration based
BEAST (BEAST-C, [31]), and (ii) use of polynomial approximation as an alternative to
contour integration (BEAST-P, [32]). A rough layout of algorithmic key steps in BEAST is
presented in Algorithm 2; see [32] for a more detailed formulation.

Algorithm 2 Basic BEAST projection-based eigensolver

Input: Interval [;, Matrix pair A,B € CN*N
Output: s eigenpairs (X,A) in I
1 Estimate 7 &~ i1, choose random Y € CN*™ of rank m >
2 while not 71 pairs converged do
3 Compute U = PY with suitable projector P = Py, (A, B)
4 Compute Rayleigh quotients Ay = U*AU and By = U*BU
5 Update estimate /# of /it and adjust m > i
Solve EVP AyW = ByWA
X~ UW
Orthogonalize X against locked vectors and lock newly converged vectors
Y < BX

The linear systems arising in BEAST-C have the form (zB —A)X = F, with a possibly
large number of right-hand sides F'. The complex shifts z get very close to the spectrum,
making these systems very ill-conditioned. For interior eigenvalue computations, the system
matrix also becomes completely indefinite. For these reasons, standard preconditioned itera-
tive solvers typically fail in this context [31,33]. In [31] we demonstrated that an accelerated
parallel row-projection method called CARP-CG [34] is well suited for highly indefinite sys-
tems arising in this context, and particularly apt at handling small diagonal elements, which
are common in our applications. We also proposed a hybrid parallel implementation of the
method, which is available as a prototype in the PHIST builtin kernels.

Matrix inversion can be avoided altogether if the projector can be acquired by means other
than numerical integration or rational approximation. A common choice is spectral filtering
using Chebyshev polynomials via the ChebFD scheme [17], see Sect. 4.1, in particular for the
discussion of kernel functions for reducing Gibbs oscillations [20, 33]. This is implemented
in the BEAST-P variant, available through PHIST and GHOST.

General improvements. The size of the search space is crucial for the convergence of the
method [3,17,33,35]. In BEAST we compute a suitable initial guess of the number of eigen-
pairs in the target interval by integrating the density of states obtained by the KPM (cf. 4.1).
The most recent version of the FEAST library uses a similar approach [36]. As iteration pro-
gresses, the search space size is controlled using singular value decomposition [32,33,37],



Towards an Exascale Enabled Sparse Solver Repository 15

that gives a more accurate estimation and consequentially a smaller searchspace. This low-
ers memory usage, which may be preferable for very large problems. A more generous
searchspace size can be chosen to reduce the impact of the polynomial degree on conver-
gence speed. The SVD is also used for other purposes like detecting empty intervals or
undersized search spaces [33,38].

Furthermore, a locking technique is implemented in BEAST. By excluding converged
eigenpairs from the search space—at the cost of orthogonalizing the remaining vectors in
each iteration—it is possible to reduce the cost of later iterations where only few eigenpairs
have not yet converged [32,33,38].

The most influential parameters for the cost of an iteration in BEAST are the polyno-
mial degree in BEAST-P and residual accuracy for the iterative linear solver in BEAST-C,
respectively. These two parameters have different semantics for the progress of the method,
though, and need separate consideration.

To minimize the overall work, BEAST-P finds a (problem-dependent) polynomial degree
p that, in one BEAST iteration, achieves comparably large residual drop with respect to the
number of spMVMs required to evaluate the polynomial [32]. It is then adjusted dynamically
by inspecting the residual reduction versus p. This removes the necessity of an initial guess
for a suitable degree and makes early iterations cheap since the optimal degree is approached
from below. In BEAST-C, we reduce the target residual of the iterative linear solver [32] in
early iterations. In later iterations, a higher accuracy is required to achieve a good overall
approximation.

Future releases of BEAST will include extension of the method to multiple adjacent inter-
vals (which requires careful orthogonalization and is currently in the testing stage), and the
use of single-precision solves in early iterations. BEAST was successfully tested with matri-
ces from graphene and topological insulator modeling of size up to 10°, typically computing
few hundred interior eigenpairs, using the BEAST-P variant with GHOST back end.

4.3 Block Jacobi-Davidson QR

The Jacobi-Davidson method [39] is a popular algorithm for computing a few eigenpairs of
a large sparse matrix. It can be seen as a Rayleigh-Ritz procedure with subspace acceler-
ation and deflation. Depending on some implementation details, such as the inner product
used and the way eigenvalue approximations are extracted, it may be used for Hermitian and
non-Hermitian, standard or generalized eigenproblems, and to find eigenpairs at the border
or inside of the spectrum. The Jacobi-Davidson method has several attractive features: it
exhibits locally cubic (quadratic) convergence for Hermitian (general) eigenvalue problems,
and is very robust w.r.t. approximate solution of the linear systems that occur in each itera-
tion. It also allows integrating preconditioning techniques, and the deflation of eigenvalues
near the shift make the linear systems much more well-behaved than in the case of FEAST.
For an overview of the Jacobi-Davidson method, see [40].

In [18,41] we presented the implementation of a block Jacobi-Davidson QR (BJDQR)
method which uses block operations to increase the arithmetic intensity and reduce the num-
ber of synchronization points (i.e. mitigate the latency of global reduction operations). Use



16 J. Thies et al

cases for this ESSR solver include the computation of a moderate number of extremal eigen-
pairs of large, sparse, symmetric or nonsymmetric matrices. BJDQR is a subspace algorithm:
in every iteration the search space V is extended by n;, new vectors, w;, which are obtained
by approximately solving a set of correction equations (2), and orthogonalized against all
previous directions. The solution of the sparse linear systems (2) is done iteratively.

(I1—-00")(A—oiI)(I—QQ0")Aq; ~ —(Ag; — OF), i=1...np. ()

The successful implementation of this method in PHIST goes hand-in-hand with the devel-
opment of highly optimized building blocks in GHOST. The basic operations required are
SPMMVM (Y; <— AX;) and the dense matrix-matrix products ¥ =X -Cand C =X Hy  where
X and Y denote mVecs and C an sdMat. For the full optimization, we added several custom
kernels, including the ‘in place’ variant X. ., =X -C,X ¢ C"™",C € C™* and an spMMVM
with varying shifts per column, ¥; = AX; + 0;X;.

Two main observations guided the implementation of this algorithm:

1. row-major storage of mVecs leads to much better performance of both the spMMVM,
see also [42], and the dense kernels;

2. accessing single columns in an mVec in row-major storage is disproportionally more ex-
pensive than in column-major storage because unnecessary data is loaded into the cache.

To avoid access to single vectors, ‘blocked’ implementations of the GMRES and MINRES
solvers for the correction equation are used. These schemes solve k linear systems simul-
taneously with separate Krylov spaces, bundling inner products and spMVMs. The second
important phase, orthogonalization of W against V, is performed using communication opti-
mal algorithms like TSQR [25] or SVQB [26].

The final performance critical component for Jacobi-Davidson is a preconditioning step
used to accelerate the inner solver. Preconditioning techniques typically depend strongly on
details of the sparse matrix storage format. As we do not want to impose a particular format
on the kernel library that provides the basic operations, PHIST views the preconditioner
as an abstract operator (LinearOp). This struct contains a pointer to a data object and
an apply function, which the application can use to implement e.g. a sparse approximate
inverse, an incomplete factorization or a multigrid cycle. The only preconditioned iteration
implemented directly in PHIST is CARP-CG, used in the BEAST-C algorithm in ESSEX
(Sect. 4.2). This method could also be used in the context of BIDQR, but this combination
is not yet implemented.

It is well known that the block variant of JDQR increases the total number of operations
(measured for instance in the number of spMVMs). The ESSEX results presented in [18]
demonstrated for the first time that this increase is more than compensated by the perfor-
mance gains in the basic operations, so that an overall speedup of about 20% can be expected
for a wide range of problems and problem sizes. The paper also shows that the only way to
achieve this is by consequent performance engineering on all levels. On upcoming hardware,
one can expect the benefits of the block variant over the single vector JDQR to grow because
of the increasing gap between memory bandwidth and flop rate. Furthermore, the reduction
in the number of synchronization points will increase this advantage on large scale systems.
We will present results on the heterogeneous execution of this solver on large CPU/GPU
clusters in the near future.



Towards an Exascale Enabled Sparse Solver Repository 17

5 Fault Tolerance

This section describes our development and evaluation of strategies for efficient checkpoint-
ing and restarting of iterative eigenvalue solvers. The former can be done either by storing
critical data on a parallel file system (PFS) or on a neighboring node. The latter depends
highly on the availability of a fault tolerant communication library, and two options have
been evaluated here.

Asynchronous checkpointing via dedicated threads: We use the term ‘asynchronous
checkpointing’ for application-level checkpointing where a dedicated thread is used to trans-
fer the checkpoint data to the PFS while the application performs its computations. The ben-
efits of this approach over synchronous PFS-level checkpointing have been demonstrated as
proof of concept in [43]. In a first step, an asynchronous copy of the critical data is made
in an application (or algorithm) specific checkpoint object. The task concept available in
GHOST [16] is then used for asynchronously writing the backup file to a global file sys-
tem. Critical data in the context of eigensolvers may, for instance, be a basis for the (nearly)
converged eigenspace. We have implemented and tested this strategy for KPM, ChebTP,
ChebFD, and Lanczos solvers. The detailed analysis of this approach for the Lanczos al-
gorithm is presented in [44] where we used dedicated OpenMP-threads for asynchronous
writing.

Node-level checkpointing using SCR: A more scalable approach has been evaluated us-
ing the Scalable Checkpoint-Restart (SCR) library [45], which provides node-level check-
point/restart mechanisms. Beside the local node-level checkpoints, SCR also provides the
functionality to make partner-level and XOR-encoded checkpoints. In addition, occasional
PFS-level checkpoints can be made to enable recovery from any catastrophic failures. This
strategy introduces very little overhead to the application and is demonstrated in detail along
with its comparison with asynchronous checkpointing in [44,46]. Within the ESSR, we have
equipped KPM, ChebTP, and Lanczos algorithms with this checkpointing strategy.

Automatic Fault Recovery: The automatic fault recovery (AFR) concept is to enable the
application to ‘heal itself” after a failure. The basic building block of the concept is a fault-
tolerant (FT) communication library. As an FT MPI implementation was not (yet) available,
we used the GASPI communication layer [47] to evaluate the concept in a conjugate gradient
(CG) solver [48].

As a next step, we evaluated a recent prototype of FT MPI—‘User-Level Failure Mitiga-
tion” or ULFM [49]—in the context of the KPM with automatic fault recovery. In this im-
plementation, we combined the AFR technique with node-level checkpointing using SCR.
The failed processes are replaced by newly spawned ones which take over the identity (i.e.,
rank) of the failed processes in a rebuilt communicator. All processes then read a consistent
copy of the checkpoint from the local or neighbor’s memory and resume the computation.
Experimental results on this approach are currently being prepared for publication.



18 J. Thies et al

6 Summary and Outlook

We have discussed the development of a new software repository for extreme scale sparse
eigenvalue computations on heterogeneous hardware. One key challenge of the project was
to co-design several interdependent software layers ‘from scratch’. We described a sim-
ple layered software architecture and a flexible test-driven development process which en-
abled this. The scalability challenge is addressed by holistic performance engineering and
redesigning algorithms for better data locality and communication avoidance. Techniques
for mitigating hardware failure were investigated and implemented in prototypical iterative
methods.

While this report focused on the software engineering process and algorithmic advance-
ments, we have submitted a second report which demonstrates the parallelization strategy as
well as hardware and energy efficiency of our basic building block library GHOST, see [1].

In order to achieve scalability beyond today’s Petascale computers, we are planning to
investigate (among other) scalable communication reducing orderings for our application
matrices, communication hiding using the tasking mechanism in our GHOST library, and
scalable preconditioners in GHOST for accelerating BEAST-C and Jacobi-Davidson, for in-
stance based on the prototype of CARP-CG in the PHIST builtin kernel library. Future appli-
cations will include non-Hermitian matrices and generalized eigenproblems, which requires
extensions to some of the algorithms. We are also planning to further integrate our efforts and
improve the software structure and documentation to bring forth an ESSL (Exascale Sparse
Solver Library).

Acknowledgments. This work was supported by the German Research Foundation (DFG)
through the Priority Programs 1648 “Software for Exascale Computing” under project ES-
SEX. We would like to thank Michael Meinel (DLR Simulation and Software Technology,
software engineering group) for helpful comments on the manuscript.

References

1. Kreutzer, M., Hager, G., Wellein, G.: Optimal energy efficiency by performance engineering for a kernel
polynmial method algorithm on a multicore cluster, submitted to the same journal issue

2. Lehoucq, R.B., Yang, C.C., Sorensen, D.C.: ARPACK users’ guide: solution of large-scale eigenvalue
problems with implicitly restarted Arnoldi methods. SIAM, Philadelphia (1998)

3. Polizzi, E.: A density matrix-based algorithm for solving eigenvalue problems. Phys. Rev. B 79, 115112
(2009)

4. Stathopoulos, A., McCombs, J.R.: PRIMME: preconditioned iterative multimethod eigensolver—
methods and software description. ACM Trans. Math. Softw. 37, 1-30 (2010)

5. Hernandez, V., Roman, J.E., Vidal, V.: SLEPc: A scalable and flexible toolkit for the solution of eigen-
value problems. ACM Trans. Math. Software 31, 351-362 (2005)

6. Balay, S., Abhyankar, S., Adams, M.F.,, Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V.,
Gropp, W.D., Kaushik, D., Knepley, M.G., Mclnnes, L.C., Rupp, K., Smith, B.F., Zampini, S., Zhang,
H.: PETSc Web page (2015), http://www.mcs.anl.gov/petsc

7. Baker, C.G., Hetmaniuk, U.L., Lehoucq, R.B., Thornquist, H.K.: Anasazi software for the numerical
solution of large-scale eigenvalue problems. ACM Trans. Math. Softw. 36, 1-23 (2009)

8. Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra, R.J., Hu, J.J., Kolda, T.G., Lehoucq, R.B., Long,
K.R., Pawlowski, R.P., Phipps, E.T., Salinger, A.G., Thornquist, H.K., Tuminaro, R.S., Willenbring,



Towards an Exascale Enabled Sparse Solver Repository 19

10.
11.

13.

14.

15.
16.

18.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

J.M., Williams, A., Stanley, K.S.: An overview of the Trilinos project. ACM Trans. Math. Softw. 31,
397-423 (2005)

Heroux, M.A., Willenbring, J.M.: A new overview of the Trilinos project. Sci. Program. 20 (2012)

J. Daly et al.: Inter-Agency Workshop on HPC Resilience at Extreme Scale. Tech. rep. (2012)

Hursey, J.: Coordinated Checkpoint/Restart Process Fault Tolerance for MPI Applications on HPC Sys-
tems. Ph.D. thesis, Indiana University, Bloomington, IN, USA (2010)

El-Sayed, N., Schroeder, B.: Reading between the lines of failure logs: Understanding how HPC systems
fail. In: Proc. of the 2013 43rd Annual IEEE-IFIP Int. Conf. on Dependable Systems and Networks
(DSN). pp. 1-12. DSN ’13, IEEE Computer Society, Washington, DC, USA (2013)

Williams, S., Waterman, A., Patterson, D.: Roofline: An insightful visual performance model for multi-
core architectures. Commun. ACM 52, 65-76 (2009)

I. Laguna et al.: Evaluating User-Level Fault Tolerance for MPI Applications. In: Proc. of the 21st
European MPI Users’ Group Meeting. pp. 57:57-57:62. EuroMPI/ASIA 14, ACM, New York, NY,
USA (2014)

TOP500 Supercomputer Sites. http://www.top500.0rg, accessed: June 2015

Kreutzer, M., Thies, J., Rohrig-Zollner, M., Pieper, A., Shahzad, F., Galgon, M., Basermann, A., Fehske,
H., Hager, G., Wellein, G.: GHOST: building blocks for high performance sparse linear algebra on
heterogeneous systems (2015), preprint (arXiv:1507.08101)

. Pieper, A., Kreutzer, M., Galgon, M., Alvermann, A., Fehske, H., Hager, G., Lang, B., Wellein, G.: High-

performance implementation of Chebyshev filter diagonalization for interior eigenvalue computations
(2015), preprint (arXiv:1510.04895), submitted

Rohrig-Zollner, M., Thies, J., Kreutzer, M., Alvermann, A., Pieper, A., Basermann, A., Hager, G.,
Wellein, G., Fehske, H.: Increasing the performance of the Jacobi-Davidson method by blocking (2014),
accepted for publication in SISC

Treibig, J., Hager, G., Wellein, G.: LIKWID: A lightweight performance-oriented tool suite for x86 mul-
ticore environments. In: Proceedings of the 2010 39th International Conference on Parallel Processing
Workshops. pp. 207-216. ICPPW ’10, IEEE Computer Society, Washington, DC, USA (2010)

Weille, A., Wellein, G., Alvermann, A., Fehske, H.: The kernel polynomial method. Rev. Mod. Phys. 78,
275-306 (2006)

Tal-Ezer, H., Kosloff, R.: An accurate and efficient scheme for propagating the time dependent
Schrodinger equation. J. Chem. Phys. 81, 3967 (1984)

Weille, A., Fehske, H.: Chebyshev expansion techniques. In: Fehske, H., Schneider, R., Weille, A. (eds.)
Computational Many-Particle Physics. Lect. Notes Physics, vol. 739, pp. 545-577. Springer (2008)
Jackson, D.: On approximation by trigonometric sums and polynomials. Trans. Am. Math. Soc. 13,
491-515 (1912)

Kreutzer, M., Hager, G., Wellein, G., Pieper, A., Alvermann, A., Fehske, H.: Performance engineering of
the kernel polynomial method on large-scale CPU-GPU systems. In: Parallel and Distributed Processing
Symposium (IPDPS), 2015 IEEE International. pp. 417-426 (2015)

Demmel, J., Grigori, L., Hoemmen, M., Langou, J.: Communication-optimal parallel and sequential QR
and LU factorizations. SIAM J. Sci. Comp. 34, A206-A239 (2012)

Stathopoulos, A., Wu, K.: A block orthogonalization procedure with constant synchronization require-
ments. SIAM J. Sci. Comp. 23, 2165-2182 (2002)

Alvermann, A., Basermann, A., Fehske, H., Galgon, M., Hager, G., Kreutzer, M., Krdmer, L., Lang, B.,
Pieper, A., Rohrig-Zollner, M., Shahzad, F., Thies, J., Wellein, G.: ESSEX: Equipping sparse solvers
for exascale. In: Lopes, L., et al. (eds.) Euro-Par 2014: Parallel Processing Workshops, Lecture Notes in
Computer Science, vol. 8806, pp. 577-588. Springer International Publishing (2014)

Kreutzer, M., Pieper, A., Alvermann, A., Fehske, H., Hager, G., Wellein, G., Bishop, A.R.:
Efficient large-scale sparse eigenvalue computations on heterogeneous hardware (2015),
http://scl5.supercomputing.org/sites/all/themes/SCl5images/tech_
poster/tech_poster_pages/post205.html, poster at the 2015 ACM/IEEE Int. Conf. for
High Performance Computing, Networking, Storage and Analysis

(PT-)SCOTCH project website, http://www.labri.fr/perso/pelegrin/scotch/

Polizzi, E., Kestyn, J.: High-performance numerical library for solving eigenvalue problems: FEAST
eigenvalue solver v3.0 user guide (2015), http://arxiv.org/abs/1203.4031



20

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.
48.

49.

J. Thies et al

Galgon, M., Kriamer, L., Thies, J., Basermann, A., Lang, B.: On the parallel iterative solution of linear
systems arising in the FEAST algorithm for computing inner eigenvalues. J. Par. Comp. 49, 153-163
(2015)

Galgon, M., Kramer, L., Lang, B.: Adaptive choice of projectors in projection based eigensolvers (2015),
submitted, available from http://www.imacm.uni-wuppertal.de/

Krimer, L.: Integration based solvers for standard and generalized Hermitian eigenvalue problems. Ph.D.
thesis, Bergische Universitdt Wuppertal (2014), http://nbn-resolving.de/urn/resolver.
pl?urn=urn:nbn:de:hbz:468-20140701-112141-6

Gordon, D., Gordon, R.: CARP-CG: A robust and efficient parallel solver for linear systems, applied to
strongly convection dominated PDEs. J. Par. Comp. 36, 495-515 (2010)

Kréamer, L., Di Napoli, E., Galgon, M., Lang, B., Bientinesi, P.: Dissecting the FEAST algorithm for
generalized eigenproblems. J. Comp. Appl. Math. 244, 1-9 (2013)

Di Napoli, E., Polizzi, E., Saad, Y.: Efficient estimation of eigenvalue counts in an interval (2013),
preprint (arXiv:1308.4275)

Galgon, M., Kriamer, L., Lang, B., Alvermann, A., Fehske, H., Pieper, A.: Improving robustness of
the FEAST algorithm and solving eigenvalue problems from graphene nanoribbons. Proc. Appl. Math.
Mech. 14, 821-822 (2014)

Galgon, M., Kriamer, L., Lang, B.: Counting eigenvalues and improving the integration in the
FEAST algorithm (2012), preprint BUW-IMACM 12/22, available from http://www.imacmn.
uni-wuppertal.de

Fokkema, D.R., Sleijpen, G.L.G., van der Vorst, H.A.: Jacobi—Davidson style QR and QZ algorithms
for the reduction of matrix pencils. SIAM J. Sci. Comp. 20, 94-125 (1998)

Hochstenbach, M.E., Notay, Y.: The Jacobi-Davidson method. GAMM-Mitteilungen 29, 368-382
(2006)

Rohrig-Zollner, M., Thies, J., Kreutzer, M., Alvermann, A., Pieper, A., Basermann, A., Hager, G.,
Wellein, G., Fehske, H.: Performance of block jacobi-davidson eigensolvers (2014), poster at 2014
ACM/IEEE Int. Conf. on High Performance Computing Networking, Storage and Analysis

Gropp, W.D., Kaushik, D.K., Keyes, D.E., Smith, B.F.: Towards realistic performance bounds for im-
plicit CFD codes. In: Proceedings of Parallel CFD’99. pp. 233-240. Elsevier (1999)

Shahzad, F., Wittmann, M., Zeiser, T., Wellein, G.: Asynchronous checkpointing by dedicated check-
point threads. In: Proc. of the 19th European conf. on Recent Advances in the Message Passing Interface.
pp. 289-290. EuroMPI’ 12, Springer-Verlag, Berlin, Heidelberg (2012)

Shahzad, F., Wittmann, M., Kreutzer, M., Zeiser, T., Hager, G., Wellein, G.: A survey of check-
point/restart techniques on distributed memory systems. Parallel Processing Letters 23, 1340011-1 —
1340011-20 (2013)

K. Sato et al.: Design and modeling of a non-blocking checkpointing system. In: Proc. of the Conf.
on High Performance Computing, Networking, Storage and Analysis. pp. 19:1-19:10. IEEE Computer
Society Press, Los Alamitos, CA, USA (2012)

Shahzad, F., Wittmann, M., Zeiser, T., Hager, G., Wellein, G.: An evaluation of different I/O techniques
for checkpoint/restart. In: Proc. of the 2013 IEEE Int. Par. and Dist. Processing Symp. (IPDPS). pp.
1708-1716. IEEE Computer Society (2013)

GASPI project website: http://www.gaspi.de/en/project.html

Shahzad, F., Kreutzer, M., Zeiser, T., Machado, R., Pieper, A., Hager, G., Wellein, G.: Building a fault
tolerant application using the GASPI communication layer. In: Proceedings of the 1st Int. Workshop on
Fault Tolerant Systems (FTS 2015), in conjunction with IEEE Cluster 2015. pp. 580-587 (2015)
Bland, W., Bouteiller, A., Herault, T., Hursey, J., Bosilca, G., Dongarra, J.: An Evaluation of User-Level
Failure Mitigation Support in MPL. In: Jesper, T., Benkner, S., Dongarra, J. (eds.) Recent Advances in
the Message Passing Interface, Lecture Notes in Computer Science, vol. 7490, pp. 193-203. Springer
Berlin Heidelberg (2012)



