27 research outputs found

    The NADPH oxidase Nox4 restricts the replicative lifespan of human endothelial cells

    Get PDF
    The free radical theory of aging proposes that ROS (reactive oxygen species) are major driving forces of aging, and are also critically involved in cellular senescence. Besides the mitochondrial respiratory chain, alternative sources of ROS have been described that might contribute to cellular senescence. Noxs (NADPH oxidases) are well-known sources of superoxide, which contribute to the antimicrobial capabilities of macrophages, a process involving the prototypical member of the family referred to as Nox2. However, in recent years non-phagocytic homologues of Nox2 have been identified that are involved in processes other than the host defence. Superoxide anions produced by these enzymes are believed to play a major role in signalling by MAPKs (mitogen-activated protein kinases) and stress-activated kinases, but could also contribute to cellular senescence, which is known to involve oxygen radicals. In HUVECs (human umbilical vein endothelial cells), Nox4 is predominantly expressed, but its role in replicative senescence of HUVECs remains to be elucidated. Using shRNA (small-hairpin RNA)-mediated knockdown of Nox4, implicating lentiviral vectors, we addressed the question of whether lifelong depletion of Nox4 in HUVECs would influence the senescent phenotype. We found a significant extension of the replicative lifespan of HUVECs upon knockdown of Nox4. Surprisingly, mean telomere length was significantly reduced in Nox4-depleted cells. Nox4 depletion had no discernable influence on the activity of MAPKs and stress-activated kinases, but reduced the degree of oxidative DNA damage. These results suggest that Nox4 activity increases oxidative damage in HUVECs, leading to loss of replicative potential, which is at least partly independent of telomere attrition

    Report from the second cytomegalovirus and immunosenescence workshop.

    Get PDF
    The Second International Workshop on CMV & Immunosenescence was held in Cambridge, UK, 2-4th December, 2010. The presentations covered four separate sessions: cytomegalovirus and T cell phenotypes; T cell memory frequency, inflation and immunosenescence; cytomegalovirus in aging, mortality and disease states; and the immunobiology of cytomegalovirus-specific T cells and effects of the virus on vaccination. This commentary summarizes the major findings of these presentations and references subsequently published work from the presenter laboratory where appropriate and draws together major themes that were subsequently discussed along with new areas of interest that were highlighted by this discussion.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    How aging affects T lymphocyte-mediated immunity

    No full text
    Increasing age has been associated with an insufficient protection following vaccination and an increased incidence and severity of infectious diseases. The predicted acceleration of global population aging will accentuate the need to understand the mechanisms that drive the age-related decline of the immune system and to, eventually, identify strategies to lower the burden of infectious diseases in elderly people. One type of immune cell appears to be most dramatically affected by the aging process: T lymphocytes. Age-related changes of the bone marrow and the thymus microenvironment lead to a decreased thymic output of functional, naïve T lymphocytes. As T lymphocytes are key players of the adaptive immune system, this research topic will summarize our current understanding on how aging affects the microenvironmental niches and molecular networks that are important for the generation, survival and function of naïve, memory and effector T lymphocytes. This research topic will also address the impact of aging on the different T lymphocyte lineages, such as regulatory T cells and Th17 cells and how age-related changes of the microenvironment affect organ- and tissue-resident memory T lymphocytes. Eventually, the identification of a set of markers for immunosenescence would facilitate the design and application of more specific therapies and improved vaccines and vaccination strategies for elderly people, thereby increasing life and health span

    Changes within the immune system from Birth to Old Age

    No full text
    A wide range of age-related alterations in immune system function have been described which contribute to the high prevalence, the more severe disease course and the poorer prognosis of certain infectious diseases in the elderly population and the low efficacy of vaccinations. Moreover, the development and progression of other agerelated diseases, such as certain cancers, atherosclerosis, dementia, osteoporosis and rheumatoid arthritis have been associated with altered immune function in old age. The most prominent event contributing to immunosenescence is the involution of the thymus which leads to a dramatic loss of T cell function. It is therefore of great importance to fully assess age-related changes within the immune system and to develop strategies aiming at restoring immune system function in elderly persons

    Producing GM-CSF: a unique T helper subset?

    No full text
    corecore