21 research outputs found
Condiciones gerenciales para causar impacto en la productividad de las instituciones prestadoras de servicios de salud
Identificar las condiciones gerenciales que permitan generar impacto en laproductividad de las instituciones prestadoras de servicios de salud (IPS). secentró en la recolección de información en torno a los diversos estilos gerenciales,para de este modo, determinar cómo estos se articulan a la productividadde las IPS, para ello, se identificaron los sistemas administrativos bajoel cual las IPS direccionan sus acciones, además, se determinó la concepciónque estas entidades tienen acerca de la productividad y como la manejan.De acuerdo con los resultados, los estilos gerenciales están aunados a laproductividad empresarial en la medida que estos afecten positiva o negativamentea sus colaboradores, por lo anterior, se concluye que es importanteestructurar estrategias pertinentes que les permitan a las IPS hacer frente alos retos del mercado, a partir de una gestión integral
Efficiency of mining algorithms in academic indicators
Data Mining is the process of analyzing data using automated methodologies to find hidden patterns [1]. Data mining processes aim at the use of the dataset generated by a process or business in order to obtain information that supports decision making at executive levels [2] [3] through the automation of the process of finding predictable information in large databases and answer to questions that traditionally required intense manual analysis [4]. Due to its definition, data mining is applicable to educational processes, and an example of that is the emergence of a research branch named Educational Data Mining, in which patterns and prediction search techniques are used to find information that contributes to improving educational quality [5]. This paper presents a performance study of data mining algorithms: Decision Tree and Logistic Regression, applied to data generated by the academic function at a higher education institution
Big data and automatic detection of topics: social network texts
This paper proposes the analysis of the influence of terms that express feelings in the automatic detection of topics in social networks. This proposal uses an ontology-based methodology which incorporates the ability to identify and eliminate those terms that present a sentimental orientation in social network texts, which can negatively influence the detection of topics. To this end, two resources were used to analyze feelings in order to detect these terms. The proposed system was evaluated with real data sets from the Twitter and Facebook social networks in English and Spanish respectively, demonstrating in both cases the influence of sentimentally oriented terms in the detection of topics in social network texts
Intelligent model for electric power management: patterns
When talking about electric power, the first thing to think about is whether enough electrical energy is generated to use without paying attention to it, similar to thinking that water will never runs out, but when faced with extreme droughts, people think that water can be depleted and they must save. In this sense, electrical energy must be saved and used completely and that is why the term energy efficiency is born. This new trend seeks to save electric power to avoid electricity supply shortages, as when countries face phenomena such as El Niño that generate droughts in some areas and rains in others. So, saving energy is a trend because it is important to be prepared for these phenomena, and guaranteeing a sustainable country. This document shows the importance of energy savings, as well as the need to design intelligent models that help to support the reduction of the problem of excessive consumption of electricity
Ferramentas Tecnológicas Baseadas em Inteligência Artificial na Indústria Açucareira: Uma Análise Bibliométrica e Perspectivas Futuras para Eficiência Energética
Introduction: The application of Artificial Intelligence –AI– in industrial sugar production, particularly in sensor data and systems management, is rapidly evolving towards real-time monitoring programs that offer valuable recommendations and decision-making support within the sugar industry. Methodology: This comprehensive bibliometric analysis of 125 Scopus-indexed articles highlights significant trends in the field, including surges in article production during 2017, 2018, 2021, and 2022, accounting for 34% of total publications. Results: Scientific production in this domain grew by 3.93% from 1969 to 2023. Most research (81%) originated from key countries, including Australia, Brazil, India, China, the Philippines, the United States, and France. Prominent journals played a pivotal role, representing 19% of publications. Noteworthy authors include Attard, Everingham, Meng, and Sexton, with four published articles each. Remarkably, 88% of researchers in this field are transitory. This study underscores dynamic growth in artificial intelligence applications in sugar production, emphasizing sustainability in data and systems management. Conclusions: The effective integration of these technologies holds the potential to enhance sustainability practices, optimizing efficiency and quality throughout the sugar production supply chain, thereby contributing to the attainment of Sustainable Development Goal 9. The utilization of artificial intelligence to optimize industrial sugar production represents technological innovation capable of improving the efficiency and infrastructure of the sugar industry, consequently fostering global sustainable development.Introducción: La aplicación de la Inteligencia Artificial –IA– en la producción industrial de azúcar, particularmente en la gestión de sistemas y datos de sensores, está evolucionando rápidamente hacia programas de monitoreo en tiempo real que ofrecen valiosas recomendaciones y apoyo a la toma de decisiones dentro de la industria azucarera. Metodología: Este análisis bibliométrico integral de 125 artículos indexados en Scopus destaca tendencias significativas en el campo, incluidos aumentos repentinos en la producción de artículos durante 2017, 2018, 2021 y 2022, que representan el 34% del total de publicaciones. Resultados: La producción científica en este ámbito creció un 3.93% entre 1969 y 2023. La mayor parte de la investigación (81%) se originó en países clave, incluidos Australia, Brasil, India, China, Filipinas, Estados Unidos y Francia. Las revistas destacadas desempeñaron un papel fundamental, representando el 19% de las publicaciones. Entre los autores destacables se encuentran Attard, Everingham, Meng y Sexton, con cuatro artículos publicados cada uno. Cabe destacar que el 88% de los investigadores en este campo son transitorios. Este estudio subraya el crecimiento dinámico de las aplicaciones de inteligencia artificial en la producción de azúcar, enfatizando la sostenibilidad en la gestión de datos y sistemas. Conclusiones: La integración efectiva de estas tecnologías puede mejorar las prácticas de sostenibilidad, optimizando la eficiencia y la calidad en toda la cadena de suministro de la producción de azúcar, contribuyendo al logro del Objetivo de Desarrollo Sostenible 9. Esto se debe a que el uso de inteligencia artificial para optimizar la producción industrial de azúcar representa una innovación tecnológica que puede mejorar la eficiencia y la infraestructura de la industria azucarera. Esto, a su vez, puede contribuir a lograr el desarrollo sostenible a escala global.Introdução: A aplicação da Inteligência Artificial –IA– na produção industrial de açúcar, particularmente em dados de sensores e gestão de sistemas, está a evoluir rapidamente para programas de monitorização em tempo real que oferecem recomendações valiosas e apoio à tomada de decisões na indústria açucareira. Metodologia: Esta análise bibliométrica abrangente de 125 artigos indexados pela Scopus destaca tendências significativas na área, incluindo aumentos na produção de artigos durante 2017, 2018, 2021 e 2022, representando 34% do total de publicações. Resultados: A produção científica neste domínio cresceu 3,93% entre 1969 e 2023. A maior parte da investigação (81%) teve origem em países-chave, incluindo Austrália, Brasil, Índia, China, Filipinas, Estados Unidos e França. Periódicos proeminentes desempenharam um papel fundamental, representando 19% das publicações. Autores notáveis incluem Attard, Everingham, Meng e Sexton, com quatro artigos publicados cada. Notavelmente, 88% dos investigadores nesta área são transitórios. Este estudo ressalta o crescimento dinâmico das aplicações de inteligência artificial na produção de açúcar, enfatizando a sustentabilidade na gestão de dados e sistemas. Conclusões: A integração eficaz destas tecnologias pode melhorar as práticas de sustentabilidade, otimizando a eficiência e a qualidade em toda a cadeia de abastecimento da produção de açúcar, contribuindo para a concretização do Objetivo de Desenvolvimento Sustentável 9. Isto porque a utilização da inteligência artificial para otimizar a produção industrial de açúcar representa uma inovação tecnológica que pode melhorar a eficiência e a infraestrutura da indústria açucareira. Isto, por sua vez, pode contribuir para alcançar o desenvolvimento sustentável à escala global
Using discrete-event-simulation for improving operational efficiency in laboratories: a case study in pharmaceutical industry
Just-in-time delivery has become a key aspect of pharmaceutical industry when loyalizing customers and competing internationally. Additionally, prolonged lead times may lead to increased work-in-process inventory, penalties for non-compliance and cost overrun. The problem is more complex upon considering a wide variety of products as often noted in pharmaceutical companies. It is then relevant to design strategies focusing on improving the delivery performance. Therefore, this paper proposes the use of Discrete-event simulation (DES) to identify inefficiencies and define solutions for the delivery problem. First, input data were gathered and analyzed. Then, a DES model was developed and validated. Finally, potential improvement scenarios were simulated and analyzed regarding productivity rate and proportion of tardy jobs. A case study in a pharmaceutical laboratory is presented to validate the proposed methodology. The results evidenced that, by implementing the best scenario, the productivity may be augmented by 44.83% which would generate zero tardy jobs. © 2018, Springer International Publishing AG, part of Springer Natur
Comunicación y humanización para el fortalecimiento de la calidad de los proveedores de servicios de salud en Colombia
This article briefly brings together reflections regarding the thematic axis of communication and humanization for strengthening the quality of health service providers in Colombia, it is composed of two terms that are inseparable, communication and humanization. Consequently, with the aforementioned purpose, a brief thematic tour has been designed that exposes this set of epistemological contributions. In the approach of the study, the level of satisfaction of the users who received attention in the health services in the city of Barranquilla is analyzed, with the purpose of explaining the communication and humanization for the strengthening of the quality of the health service providers. Health. Likewise, depending on its nature of study and the significance of knowledge, it is framed in the positivist, analytical-empirical paradigm. The instrument used is a dichotomous questionnaire, with respect to data analysis, the SPSS program was used. Finally, it is concluded that 55% of the selected sample indicate a state of satisfaction of the population under study, while 45% do not in administrative processes and procedures denotes the need for improvement in these institutions, since these aspects present a satisfaction valued below 50%. In addition, it is necessary to redesign administrative processes to achieve a greater number of users who access health services in the city's institutions.El presente artículo reúne brevemente reflexiones respecto al eje temático de la comunicación y humanización para el fortalecimiento de la calidad de los proveedores de servicios de salud en Colombia, el mismo está compuesto por dos términos que resultan inseparables, comunicación y humanización. En consecuencia, con el propósito antes mencionado, se ha diseñado un breve recorrido temático que expone este conjunto de aportaciones epistemológicas. En el abordaje del estudio se analiza el nivel de satisfacción de los usuarios que recibieron atención en los servicios de salud en la ciudad de Barranquilla, con la finalidad de explicitar de la comunicación y humanización para el fortalecimiento de la calidad de los proveedores de servicios de salud. Igualmente, en función de su naturaleza del estudio y la significación del conocimiento, se enmarca en el paradigma positivista, analítica-empírica. El instrumento utilizado es un cuestionario dicotómico, con respecto al análisis de datos se utilizó el programa SPSS. Finalmente, se concluye que el 55% de la muestra seleccionada, indican un estado de satisfacción de la población objeto de estudio, mientras que un 45% no en procesos y procedimientos administrativos se denota la necesidad de mejora en estas instituciones, a partir de que dichos aspectos presentan una satisfacción valorada por debajo del 50%. Además, es necesario rediseñar procesos administrativos para lograr una mayor de los usuarios que accedan a servicios de salud en las instituciones de la ciudad
Classification of digitized documents applying neural networks
The exponential increase of the information available in digital format during the last years and the expectations of future growth make it necessary for the organization of information in order to improve the search and access to relevant data. For this reason, it is important to research and implement an automatic text classification system that allows the organization of documents according to their corresponding category by using neural networks with supervised learning. In such a way, a faster process can be carried out in a timely and cost-efficient way. The criteria for classifying documents are based on the defined categories