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Abstract. Data Mining is the process of analyzing data using automated methodologies to find 

hidden patterns [1]. Data mining processes aim at the use of the dataset generated by a process 

or business in order to obtain information that supports decision making at executive levels [2] 

[3] through the automation of the process of finding predictable information in large databases 

and answer to questions that traditionally required intense manual analysis [4]. Due to its 

definition, data mining is applicable to educational processes, and an example of that is the 

emergence of a research branch named Educational Data Mining, in which patterns and 

prediction search techniques are used to find information that contributes to improving 

educational quality [5]. This paper presents a performance study of data mining algorithms: 

Decision Tree and Logistic Regression, applied to data generated by the academic function at a 

higher education institution. 

1. Introduction 

In order to apply a data mining project, in any type of scenario, it is necessary to carry out a study of the 

available algorithms to determine the one that best suits the needs of the project to be carried out [6]. 

For this reason, a study has been developed on the performance of Microsoft's Decision Tree and 

Logistic Regression algorithms, applied to the academic data of a higher education institution. 

Previous studies such as that of the University of Minho in Portugal [7], took data about high school 

students from two public institutions in the same country to apply prediction techniques. Three different 

mining purposes and four data mining methods were tested. The obtained results revealed that it is 

possible to achieve high precision in the prediction, given the data of two academic periods. At Awadh 

University in India, a student achievement study was conducted based on a group of 60 students from 

different careers [8]. The mining classification task was used on the basis of student data to predict 

student division. Information such as attendance, tests, seminars and assignments were collected to 

predict performance at the end of the academic period [9], [10], [11]. 

Data mining techniques come from artificial intelligence and statistics, and are embodied in 

algorithms which are then applied to a set of data to obtain results [12] [13]. Each algorithm is designed 

to accept or drop different types of data, so from that perspective, algorithms that do not accept the types 

of data existing in each project can be discarded [14]. In this scenario, due to the use of both discrete 

and continuous data, Microsoft's Decision Tree and Logistic Regression algorithms are chosen over the 
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others implemented by Microsoft's Data Tools Analysis Services (SSDT), a tool associated with the 

development of databases and business intelligence projects. 

The Logistic Regression algorithm is a type of statistical analysis oriented to the prediction of a 

categorical variable in function of other variables considered as predictive parameters [15]. Specifically, 

the algorithm implemented by Microsoft turns out to be a variant of the neural network algorithm. This 

type of algorithm accepts any type of input and so it is considered flexible, and fits various analytical 

tasks within data mining, including prediction, classification, and exploring and weighing the factors 

that contribute to a specific outcome [16]. 

For their part, decision trees and rules that use invariant divisions have a simple form of 

representation, making the inference model relatively simple for the user's understanding [17]. A 

decision tree model has a unique primary node that represents the model and its metadata. Below the 

primary node are independent trees representing the prediction attributes selected. 

A common variable to the algorithms described above is performance, because it is defined as the 

characteristic related to response time, resource usage (RAM and CPU) and reliability of operations 

[18]. The reliability of a prediction algorithm is given by the precision with which a resulting model 

defines the input data set. This factor is quantifiable with Microsoft's Data Tools analysis tool. The study 

seeks to determine the algorithm with better performance between: Decision Tree and Logistic 

Regression of Microsoft, on continuous and discrete data of academic indicators from a higher education 

institution. 

2. Test Environment 

The server on which the tests were performed presents the hardware and software features described in 

Table 1. 

 

Table 1. Server specifications [19] 

 

Characteristic Specification 

Processor Intel® Core™ i7-4702MQ 

@2.20GHz 

RAM 8GB 

Hard Disk 1TB 

Operating system Windows 8.1 

Database engine Microsoft SQL Server 2012 

Standard 

 

This testing environment is oriented to cover the objectives related to the axes of the academic 

process which are: admission, enrolment, promotion and graduation. The requirements are listed below: 

• Determine behavior patterns for student admissions; by career and faculty. 

• Determine behavior patterns for student enrollment and subject selection (number of subjects, 

number of credits, level and subject area, etc.); by career, by level, and by faculty. 

• Determine the factors that influence the cases of dropout (desertion and loss of the subject by 

attendance); by career, levels, subjects, areas of knowledge and faculty. 

• Determine behavior patterns in the academic promotion of students; by subject, level, areas of 

knowledge, career, and faculty. 

• Determine factors that influence second and third enrollment scenarios; by subject, level, areas 

of knowledge, career, and faculty. 

• Determine the factors that influence the cases of students with low terminal efficiency; by career 

and faculty. 

 

In order to measure indicators, the total number of mining models that meet the requirements was 

taken as the population. Because each requirement needs different levels of detail, 1025 models were 

considered, selected as the population number, and the sample size is defined by the formula [20]. 
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Each of the algorithms was applied to a data structure that satisfies the defined requirements. These 

structures are a set of data obtained with SQL language and integrated to the Data Tools through the 

"Data View" option. The attributes used for each data structure are described in Table 2.  

 

Table 2. Attributes of data structures 

 

Indicators Attributes 

Entry ID [string], names [string], age of registration [integer], city of provenance 

[string], province of provenance [string], country of provenance [string], sex 

[string], marital status [string], career of inscription [string], 

institute of provenance [string], title [string]. 

Enrollment Key [integer], student code [string], names [string], nationality [string], sex 

[string], age of enrollment [integer], total subjects chosen [string], total credits 

chosen [string]. 

Dropout Key [integer], subject [string], theoretical hours [integer], practical hours 

[integer], field of study [string], enrolment number [integer], attendance [integer], 

subject level [integer], student names [string], student sex [string], student 

nationality [string], student marital status [string], teacher names [string], teacher 

gender [string], teacher marital status [string], teacher nationality [string], teacher 

type [string], teacher title type, dropout form [string]. 

Promotion Key [integer], subject [string], theoretical hours of the subject [integer], practical 

hours of the subject [integer], field of study [string], enrolment number [integer], 

subject level [integer], promotion note [whole], student names [string], student 

gender [string], student nationality [string], teacher names [string], teacher 

nationality [string], teacher gender [string], teacher marital status [string], teacher 

type [string]. 

Repeat Key [integer], subject [string], theoretical subject hours [decimal], practical 

subject hours [decimal], subject area [string], enrolment number [integer], 

attendance [integer], subject level [integer], student names [string], student sex 

[string], student nationality [string], teacher names [string], teacher sex [string], 

teacher marital status [string], teacher nationality [string], teacher type [string], 

final note [decimal]. 

Terminal Efficiency Key [integer], student names [string], student gender [string], nationality [string], 

graduation project area [string], grade point average [decimal], grade point 

average [decimal], final credits [decimal], age of entry [integer], time to finish 

pensum [integer], terminal efficiency [integer]. 

 

Scenarios arise when an algorithm is added to the data structure; that is, they are defined with the 

implementation of the logistic decision tree and logistic regression algorithm respectively. The steps to 

follow to carry out this process are [19]: 

a) Select the definition of the origin of the data structure (relational). 

b) Select the Logistic Regression algorithm for scenario 1 and Decision Tree for scenario 2. 

c) Select the source data set. 

d) Specify the types of data. 

e) the learning and testing set for the algorithm. 

f) Name the data mining model and structure. 

3. Results and Discussions  

 

3.1 Response Time 

The response time was measured in seconds with the help of Microsoft's Data Tools. Figure 1 presents 

a summary graph of the results. 
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Figure 1. Response Time. Decision tree in blue and logistic regression in green. 

 

The figure above shows that the response time values for the logistic regression algorithm have 

greater variation than the values for the decision tree algorithm. Descriptive data indicate that: the mean 

of the 86 sample values for the decision tree algorithm is 8.54 seconds, with a standard deviation of 

8.58; versus 12.11 seconds for the logistic regression algorithm with a standard deviation of 26.14. 

 

3.2 CPU usage 

This indicator was taken in percent with the help of the Microsoft system monitor. Figure 2 presents a 

summary graph of the results obtained from this process. 

 

 

 

 

 
 

Figure 2. CPU Usage in Percent. Decision tree in blue and logistic regression in green. 

 

The values obtained show great variability in the use of CPUs in the two study algorithms, with the 

mean of the 86 values taken for the decision tree algorithm being 0.61% with a standard deviation of 

0.15; while the logistic regression algorithm has an average of 0.53% with a standard deviation of 0.20. 

 

3.3 RAM Use 

This indicator was taken in Megabytes with the help of the Microsoft system monitor. Figure 3 presents 

a summary graph of the results obtained from this process. Re
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Figure 3. RAM usage in megabytes. Decision tree in blue and logistic regression in green. 

 

The values with respect to the use of RAM shown in the previous graph do not show a significant 

difference between the two study algorithms, with the mean of the 86 values taken for the decision tree 

algorithm is 130.11 MB with a standard deviation of 21.22, while the mean for the logistic regression 

algorithm is 134.58 MB with 23.72 standard deviation. 

 

3.4 Accuracy 

The accuracy indicator is a value taken from Microsoft's Data Tools. Figure 4 presents a summary graph 

of the results obtained from this process. 

 

 

Figure 4. Accuracy in scoring. Decision tree in blue and logistic regression in green. 

 

The accuracy values of the algorithms, shown in the graph above, show variability in the two case 

studies, which is confirmed by the descriptive data: the decision tree algorithm has an average of 0.79 

in accuracy of the 86 models obtained with a standard deviation of 0.25; while the logistic regression 

algorithm has an average of 0.80 with a standard deviation of 0.21. The decision tree algorithm has an 

average of 0.79 in the accuracy of the 86 models obtained with a standard deviation of 0.25; while the 

logistic regression algorithm has an average of 0.80 with a standard deviation of 0.21. 

 

3.5 Hypothesis Contrasts 

In order to determine the best performance algorithm to be applied to the academic data of the higher 

education institution, four hypotheses were contrasted with respect to the defined performance 

indicators: response time, CPU use, RAM use and accuracy. The null hypothesis in the mean comparison 

tests for each indicator is that the performance of the two algorithms is the same; therefore, the algorithm 

with the highest performance can be determined in cases where the null hypothesis is rejected in these 

mean comparison tests. 
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Since the sample data set does not meet the normal hypothesis, the nonparametric test "Wilcoxon 

Sign Range Test" was applied for related samples. And the results are shown in Table 3: 

 

Table 3. Hypothesis test summary 

 

Null hypothesis (Ho) Significance  

(4 tails) 

Decision 

The median of the differences between the Logistic Regression 

response time and the Logistic Tree response time 

Decision equals 0. 

0,004 Reject  null 

hypothesis 

The median of the differences between the accuracy of Logistic 

Regression and the accuracy of Decision Tree is equal to 0. 

0,052 Reject  null 

hypothesis 

The median of the differences between the use of Logistics 

Regression CPU and the use of Decision Tree CPU equals 0. 

0,043 Reject  

null hypothesis 

The median of the differences between the use of Logistic 

Regression RAM and use of the Decision Tree RAM equals 0. 

0,047 Keep 

null hypothesis 

 

From the comparison between sample means, for those variables in which Ho is rejected, it can be 

determined that there is sufficient statistical evidence to affirm that: 

• The Decision Tree algorithm with 8.14 seconds exceeds Logistic Regression in response 

time with 12.10 seconds. 

• The Logistic Regression algorithm has an average of 0.53%, which surpasses the Decision 

Tree algorithm, whose average is 0.61% with respect to CPU usage. 

• The Decision Tree algorithm has an average accuracy of 0.71; while the Logistic Regression 

Algorithm has an average accuracy of 0.73, which defines that Decision Tree overpasses in 

the precision test. 

 

Response time and accuracy results favor the Decision Tree algorithm, while Logistic Regression 

outperforms it in CPU usage. The use of RAM was similar for both algorithms. Since accuracy is the 

most important indicator for determining the best performance algorithm, the Decision Tree algorithm 

is chosen to be applied in the analysis of academic indicators in higher education. 

4. Conclusions  

The analysis of the performance of the Decision Tree and Logistic Regression algorithms, under the 

indicators of response time, CPU usage, RAM usage and accuracy, over academic indicator data, reveals 

that the accuracy of these algorithms is different. In this way it is established that the Decision Tree 

algorithm has better accuracy, due to the fact that its sample mean value is higher. It should be noted 

that the precision indicator is the most important for establishing the performance of a data mining 

algorithm. 

The algorithms do not present significant difference in the use of RAM, which can be attributed to 

the fact that the algorithms were tested under the same data structures and the RAM storage required for 

the process is related to the amount of input data provided. The CPU usage of the Decision Tree and 

Logistic Regression algorithms is different and it is determined that Logistic Regression makes less use 

of this resource versus Decision Tree. 

At response time, the Decision Tree algorithm has a lower mean than the Logistic Regression 

algorithm, so it can be concluded that it does it faster against the same scenario, because the second 

algorithm uses one analysis for each prediction attribute while the first one uses the input data as a single 

set for analysis. 

Under the circumstances indicated in the previous paragraphs, the Decision Tree algorithm was 

determined as the algorithm with the best performance over academic data. Obtaining the socioeconomic 

data of the students will contribute with new patterns within the extraction of knowledge, so this research 

suggests to develop a plan to integrate this information to a study on mining algorithms. 
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