70 research outputs found

    Down-regulation of transforming growth factor-β type II receptor (TGF-βRII) protein and mRNA expression in cervical cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cervical carcinogenesis is a multistep process initiated by "high risk" human papillomaviruses (HR-HPV), most commonly HPV16. The infection <it>per se </it>is, however, not sufficient to induce malignant conversion. Transforming Growth Factor β (TGF-β) inhibits epithelial proliferation and altered expression of TGF-β or its receptors may be important in carcinogenesis. One cofactor candidate to initiate neoplasia in cervical cancer is the prolonged exposure to sex hormones. Interestingly, previous studies demonstrated that estrogens suppress TGF-β induced gene expression. To examine the expression of TGF-β2, TGF-βRII, p15 and c-myc we used <it>in situ </it>RT-PCR, real-time PCR and immunohistochemistry in transgenic mice expressing the oncogene E7 of HPV16 under control of the human Keratin-14 promoter (K14-E7 transgenic mice) and nontransgenic control mice treated for 6 months with slow release pellets of 17β-estradiol.</p> <p>Results</p> <p>Estrogen-induced carcinogenesis was accompanied by an increase in the incidence and distribution of proliferating cells solely within the cervical and vaginal squamous epithelium of K14-E7 mice. TGF-β2 mRNA and protein levels increased in K14-E7 transgenic mice as compared with nontransgenic mice and further increased after hormone-treatment in both nontransgenic and transgenic mice. In contrast, TGF-βRII mRNA and protein levels were decreased in K14-E7 transgenic mice compared to nontransgenic mice and these levels were further decreased after hormone treatment in transgenic mice. We also observed that c-myc mRNA levels were high in K14-E7 mice irrespective of estrogen treatment and were increased in estrogen-treated nontransgenic mice. Finally we found that p15 mRNA levels were not increased in K14-E7 mice.</p> <p>Conclusion</p> <p>These results suggest that the synergy between estrogen and E7 in inducing cervical cancer may in part reflect the ability of both factors to modulate TGF-β signal transduction.</p

    Experimental validation for chatter stability prediction

    Get PDF
    This research focused on the experimental validation for chatter stability prediction. An optimum machining was aimed to maximize the material removal rate, whilst maintaining a sufficient stability margin to assure the surface quality. High material removal rate in machining produced self-excited vibration or chatter of the cutting tool and the workpiece. This resulted in a poor surface finish and dimensional accuracy, chipping of the cutter teeth, and also may damage the workpiece as well as machining tool. Frequency response function of a single degree freedom flexural was measured and the cutting stiffness of tools were determined in order to be used in predicting chatter stability using semi discretization method. The aluminium 7075 specimens were used in the milling cutting experiment to validate the chatter stability diagram of mill uniform and variable cutters, where a set of spindle speed and depth of cut had tested. The vibration conditions of machining were identified by analysing the vibration signals and FFT spectrum whether it was stable or in a chatter condition. There are good agreement between predicted stability and cutting experiment for the down-milling operation using uniform 4 flute cutting tool. Stable conditions were shown outside the boundary of chatter region. The optimized cutting tool was predicted to suppress chatter. Machining experiment tests showed there were no chatter vibration conditions during machining process until 1.5 mm depth of cut. According to the results of machining experiment, it was proven that the variable tool had more capability to machining without producing chatter vibration as compared to the regular tool

    Bacillus Calmette–Guérin-Induced Human Mast Cell Activation Relies on IL-33 Priming

    Get PDF
    Bacillus Calmette–Guérin (BCG) vaccine is an attenuated strain of Mycobacterium bovis that provides weak protection against tuberculosis (TB). Mast cells (MCs) are tissue-resident immune cells strategically that serve as the first line of defence against pathogenic threats. In this study, we investigated the response of human MCs (hMCs) to BCG. We found that naïve hMCs exposed to BCG did not secrete cytokines, degranulate, or support the uptake and intracellular growth of bacteria. Since we could show that in hMCs IL-33 promotes the transcription of host-pathogen interaction, cell adhesion and activation genes, we used IL-33 for cell priming. The treatment of hMCs with IL-33, but not IFN-γ, before BCG stimulation increased IL-8, MCP-1 and IL-13 secretion, and induced an enhanced expression of the mycobacteria-binding receptor CD48. These effects were comparable to those caused by the recombinant Mycobacterium tuberculosis (Mtb) 19-KDa lipoprotein. Finally, stimulation of hMCs with IL-33 incremented MC-BCG interactions. Thus, we propose that IL-33 may improve the immunogenicity of BCG vaccine by sensitising hMCs

    Beneficial or detrimental activity of regulatory T cells, indoleamine 2,3-dioxygenase, and heme oxygenase-1 in the lungs is influenced by the level of virulence of Mycobacterium tuberculosis strain infection

    Get PDF
    Tuberculosis (TB) caused by the complex Mycobacterium tuberculosis (Mtb) is the main cause of death by a single bacterial agent. Last year, TB was the second leading infectious killer after SARS-CoV-2. Nevertheless, many biological and immunological aspects of TB are not completely elucidated, such as the complex process of immunoregulation mediated by regulatory T cells (Treg cells) and the enzymes indoleamine 2,3-dioxygenase (IDO) and heme oxygenase 1 (HO-1). In this study, the contribution of these immunoregulatory factors was compared in mice infected with Mtb strains with different levels of virulence. First Balb/c mice were infected by intratracheal route, with a high dose of mild virulence reference strain H37Rv or with a highly virulent clinical isolate (strain 5186). In the lungs of infected mice, the kinetics of Treg cells during the infection were determined by cytofluorometry and the expression of IDO and HO-1 by RT-PCR and immunohistochemistry. Then, the contribution of immune-regulation mediated by Treg cells, IDO and HO-1, was evaluated by treating infected animals with specific cytotoxic monoclonal antibodies for Treg cells depletion anti-CD25 (PC61 clone) or by blocking IDO and HO-1 activity using specific inhibitors (1-methyl-D,L-tryptophan or zinc protoporphyrin-IX, respectively). Mice infected with the mild virulent strain showed a progressive increment of Treg cells, showing this highest number at the beginning of the late phase of the infection (28 days), the same trend was observed in the expression of both enzymes being macrophages the cells that showed the highest immunostaining. Animals infected with the highly virulent strain showed lower survival (34 days) and higher amounts of Treg cells, as well as higher expression of IDO and HO-1 one week before. In comparison with non-treated animals, mice infected with strain H37Rv with depletion of Treg cells or treated with the enzymes blockers during late infection showed a significant decrease of bacilli loads, higher expression of IFN-g and lower IL-4 but with a similar extension of inflammatory lung consolidation determined by automated morphometry. In contrast, the depletion of Treg cells in infected mice with the highly virulent strain 5186 produced diffuse alveolar damage that was similar to severe acute viral pneumonia, lesser survival and increase of bacillary loads, while blocking of both IDO and HO-1 produced high bacillary loads and extensive pneumonia with necrosis. Thus, it seems that Treg cells, IDO and HO-1 activities are detrimental during late pulmonary TB induced by mild virulence Mtb, probably because these factors decrease immune protection mediated by the Th1 response. In contrast, Treg cells, IDO and HO-1 are beneficial when the infection is produced by a highly virulent strain, by regulation of excessive inflammation that produced alveolar damage, pulmonary necrosis, acute respiratory insufficiency, and rapid death

    P38 MAPK expression and activation predicts failure of response to CHOP in patients with Diffuse Large B-Cell Lymphoma

    Get PDF
    The p38 MAPK is constitutively activated in B-NHL cell lines and regulates chemoresistance. Accordingly, we hypothesized that activated p38 MAPK may be associated with the in vivo unresponsiveness to chemotherapy in B-NHL patients.Tissue microarrays generated from eighty untreated patients with Diffused Large B Cell Lymphoma (DLBCL) were examined by immunohistochemistry for the expression of p38 and phospho p38 (p-p38) MAPK. In addition, both Bcl-2 and NF-κB expressions were determined. Kaplan Meier analysis was assessed.Tumor tissues expressed p38 MAPK (82 %) and p-p38 MAPK (30 %). Both p38 and p-p38 MAPK expressions correlated with the high score performance status. A significant correlation was found between the expression p-p38 and poor response to CHOP. The five year median follow-up FFS was 81 % for p38(-) and 34 % for p38(+) and for OS was 83 % for p38(-) and 47 % for p38(+). The p-p38(+) tissues expressed Bcl-2 and 90 % of p-p38(-) where Bcl-2(-). The coexpression of p-p38 and Bcl-2 correlated with pool EFS and OS. There was no correlation between the expression of p-p38 and the expression of NF-κB.The findings revealed, for the first time, that a subset of patients with DLBCL and whose tumors expressed high p-p38 MAPK responded poorly to CHOP therapy and had poor EFS and OS. The expression of p38, p-p38, Bcl2 and the ABC subtype are significant risk factors both p38 and p-p38 expressions remain independent prognostic factors

    First insights into the genetic diversity of Mycobacterium tuberculosis isolates from HIV-infected Mexican patients and mutations causing multidrug resistance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prevalence of infections with <it>Mycobacterium tuberculosis </it>(MTb) and nontuberculous mycobacteria (NTM) species in HIV-infected patients in Mexico is unknown. The aims of this study were to determine the frequency of MTb and NTM species in HIV-infected patients from Mexico City, to evaluate the genotypic diversity of the <it>Mycobacterium tuberculosis </it>complex strains, to determine their drug resistance profiles by colorimetric microplate Alamar Blue assay (MABA), and finally, to detect mutations present in <it>kat</it>G, <it>rpo</it>B and <it>inh</it>A genes, resulting in isoniazid (INH) and rifampin (RIF) resistance.</p> <p>Results</p> <p>Of the 67 mycobacterial strains isolated, 48 were identified as MTb, 9 as <it>M. bovis</it>, 9 as <it>M. avium </it>and 1 as <it>M. intracellulare</it>. IS<it>6110</it>-RFLP of 48 MTb strains showed 27 profiles. Spoligotyping of the 48 MTb strains yielded 21 patterns, and 9 <it>M. bovis </it>strains produced 7 patterns. Eleven new spoligotypes patterns were found. A total of 40 patterns were produced from the 48 MTb strains when MIRU-VNTR was performed. Nineteen (39.6%) MTb strains were resistant to one or more drugs. One (2.1%) multidrug-resistant (MDR) strain was identified. A novel mutation was identified in a RIF-resistant strain, GAG → TCG (Glu → Ser) at codon 469 of <it>rpo</it>B gene.</p> <p>Conclusions</p> <p>This is the first molecular analysis of mycobacteria isolated from HIV-infected patients in Mexico, which describe the prevalence of different mycobacterial species in this population. A high genetic diversity of MTb strains was identified. New spoligotypes and MIRU-VNTR patterns as well as a novel mutation associated to RIF-resistance were found. This information will facilitate the tracking of different mycobacterial species in HIV-infected individuals, and monitoring the spread of these microorganisms, leading to more appropriate measures for tuberculosis control.</p

    The Impact of IFN-g; Receptor on SLPI Expression in Active Tuberculosis: Association with Disease Severity

    Get PDF
    Interferon (IFN)-g displays a critical role in tuberculosis (TB), modulating the innate and adaptive immune responses. Previously, we reported that secretory leukocyte protease inhibitor (SLPI) is a pattern recognition receptor with anti-mycobacterial activity against Mycobacterium tuberculosis (Mtb). Herein, we determined whether IFN-g modulated the levels of SLPI in TB patients. Plasma levels of SLPI and IFN-g were studied in healthy donors (HDs) and TB patients. Peripheral blood mononuclear cells from HDs and patients with TB or defective IFN-g receptor 1* were stimulated with Mtb antigen and SLPI, and IFN-gR expression levels were measured. Both SLPI and IFN-g were significantly enhanced in plasma from those with TB compared with HDs. A direct association between SLPI levels and the severity of TB was detected. In addition, Mtb antigen stimulation decreased the SLPI produced by peripheral blood mononuclear cells from HDs, but not from TB or IFN-gR patients. Neutralization of IFN-g reversed the inhibition of SLPI induced by Mtb antigen in HDs, but not in TB patients. Furthermore, recombinant IFN-g was unable to modify the expression of SLPI in TB patients. Finally, IFN-gR expression was lower in TB compared with HD peripheral blood mononuclear cells. These results show that Mtb-induced IFN-g down-modulated SLPI levels by signaling through the IFNgR in HDs. This inhibitory mechanism was not observed in TB, probably because of the low expression of IFN-gR detected in these individuals. (Am J Pathol 2014, 184: 1e6Fil: Tateosian, Nancy Liliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos; Argentina; ArgentinaFil: Pasquinelli, Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; ArgentinaFil: Hernández Del Pino, Rodrigo Emanuel. Universidad de Buenos Aires; ArgentinaFil: Ambrosi, Nella Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos; Argentina; ArgentinaFil: Guerrieri, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos; Argentina; ArgentinaFil: Pedraza Sánchez, Sigifredo. Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán; MéxicoFil: Santucci, Natalia Estefanía. Universidad Nacional de Rosario; ArgentinaFil: D'attilio, Luciano David. Universidad Nacional de Rosario; ArgentinaFil: Pellegrini, Joaquín Miguel. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Araujo Solis, María A.. Instituto Mexicano del Seguro Social; MéxicoFil: Musella, Rosa M.. Hospital "F. J. Muñiz"; ArgentinaFil: Palmero, Domingo J.. Hospital "F. J. Muñiz"; ArgentinaFil: Hernandez Pando, Rogelio. Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán; MéxicoFil: Garcia, Veronica Edith. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Chuluyan, Hector Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos; Argentina; Argentin

    Is Adipose Tissue a Place for Mycobacterium tuberculosis Persistence?

    Get PDF
    BACKGROUND: Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB), has the ability to persist in its human host for exceptionally long periods of time. However, little is known about the location of the bacilli in latently infected individuals. Long-term mycobacterial persistence in the lungs has been reported, but this may not sufficiently account for strictly extra-pulmonary TB, which represents 10–15% of the reactivation cases. METHODOLOGY/PRINCIPAL FINDINGS: We applied in situ and conventional PCR to sections of adipose tissue samples of various anatomical origins from 19 individuals from Mexico and 20 from France who had died from causes other than TB. M. tuberculosis DNA could be detected by either or both techniques in fat tissue surrounding the kidneys, the stomach, the lymph nodes, the heart and the skin in 9/57 Mexican samples (6/19 individuals), and in 8/26 French samples (6/20 individuals). In addition, mycobacteria could be immuno-detected in perinodal adipose tissue of 1 out of 3 biopsy samples from individuals with active TB. In vitro, using a combination of adipose cell models, including the widely used murine adipose cell line 3T3-L1, as well as primary human adipocytes, we show that after binding to scavenger receptors, M. tuberculosis can enter within adipocytes, where it accumulates intracytoplasmic lipid inclusions and survives in a non-replicating state that is insensitive to the major anti-mycobacterial drug isoniazid. CONCLUSIONS/SIGNIFICANCE: Given the abundance and the wide distribution of the adipose tissue throughout the body, our results suggest that this tissue, among others, might constitute a vast reservoir where the tubercle bacillus could persist for long periods of time, and avoid both killing by antimicrobials and recognition by the host immune system. In addition, M. tuberculosis-infected adipocytes might provide a new model to investigate dormancy and to evaluate new drugs for the treatment of persistent infection

    The dual face of central nervous system tuberculosis: a new Janus Bifrons?

    Get PDF
    Tuberculosis (TB) is still a common infectious disease in developing countries, but it is also re-emerging in industrialized nations due to the HIV/AIDS pandemic. In addition to bacillary virulence, the host immune response plays a major role in the development of an active disease (either as a primary infection or reactivation) and in controlling the infection. Even though several mechanisms are involved in regulating the human immune response, biological environment seems to be determinant. In this context, the integrated neuro-immune-endocrine system strongly influences TB clinical outcome. One of the most important clinical aspects of TB is shown when the infection locates in the central nervous system (CNS), in which a very different set of immune responses is induced. Herein we review several aspects of the paradoxical immune response triggered during CNS-TB infection, and discuss the implications of this response in the cerebral infection outcome.Fil: Saenz, Brenda. Universidad Nacional Autónoma de México; MéxicoFil: Hernandez Pando, Rogelio. Instituto Nacional de Ciencias Médicas y de la Nutrición; MéxicoFil: Fragoso, Gladis. Universidad Nacional Autónoma de México; MéxicoFil: Bottasso, Oscar Adelmo. Universidad Nacional de Rosario. Facultad de Ciencias Médicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cardenas, Graciela. Instituto Nacional de Neurología y Neurocirugía; Méxic
    corecore