1,095 research outputs found

    Let's Twist Again: General Metrics of G(2) Holonomy from Gauged Supergravity

    Get PDF
    We construct all complete metrics of cohomogeneity one G(2) holonomy with S^3 x S^3 principal orbits from gauged supergravity. Our approach rests on a generalization of the twisting procedure used in this framework. It corresponds to a non-trivial embedding of the special Lagrangian three-cycle wrapped by the D6-branes in the lower dimensional supergravity. There are constraints that neatly reduce the general ansatz to a six functions one. Within this approach, the Hitchin system and the flop transformation are nicely realized in eight dimensional gauged supergravity.Comment: 31 pages, latex; v2: minor changes, references adde

    Comments on M Theory Dynamics on G2 Holonomy Manifolds

    Get PDF
    We study the dynamics of M-theory on G2 holonomy manifolds, and consider in detail the manifolds realized as the quotient of the spin bundle over S^3 by discrete groups. We analyse, in particular, the class of quotients where the triality symmetry is broken. We study the structure of the moduli space, construct its defining equations and show that three different types of classical geometries are interpolated smoothly. We derive the N=1 superpotentials of M-theory on the quotients and comment on the membrane instanton physics. Finally, we turn on Wilson lines that break gauge symmetry and discuss some of the implications.Comment: 21pages, Latex2e. v2: minor change

    Hidden variables with nonlocal time

    Full text link
    To relax the apparent tension between nonlocal hidden variables and relativity, we propose that the observable proper time is not the same quantity as the usual proper-time parameter appearing in local relativistic equations. Instead, the two proper times are related by a nonlocal rescaling parameter proportional to |psi|^2, so that they coincide in the classical limit. In this way particle trajectories may obey local relativistic equations of motion in a manner consistent with the appearance of nonlocal quantum correlations. To illustrate the main idea, we first present two simple toy models of local particle trajectories with nonlocal time, which reproduce some nonlocal quantum phenomena. After that, we present a realistic theory with a capacity to reproduce all predictions of quantum theory.Comment: 16 pages, accepted for publication in Found. Phys., misprints corrected, references update

    Orchardgrass (Dactylis glomerata L.) EST and SSR marker development, annotation, and transferability.

    Get PDF
    Orchardgrass, or cocksfoot [Dactylis glomerata (L.)], has been naturalized on nearly every continent and is a commonly used species for forage and hay production. All major cultivated varieties of orchardgrass are autotetraploid, and few tools or information are available for functional and comparative genetic analyses and improvement of the species. To improve the genetic resources for orchardgrass, we have developed an EST library and SSR markers from salt, drought, and cold stressed tissues. The ESTs were bi-directionally sequenced from clones and combined into 17,373 unigenes. Unigenes were annotated based on putative orthology to genes from rice, Triticeae grasses, other Poaceae, Arabidopsis, and the non-redundant database of the NCBI. Of 1,162 SSR markers developed, approximately 80% showed amplification products across a set of orchardgrass germplasm, and 40% across related Festuca and Lolium species. When orchardgrass subspecies were genotyped using 33 SSR markers their within-accession similarity values ranged from 0.44 to 0.71, with Mediterranean accessions having a higher similarity. The total number of genotyped bands was greater for tetraploid accessions compared to diploid accessions. Clustering analysis indicated grouping of Mediterranean subspecies and central Asian subspecies, while the D. glomerata ssp. aschersoniana was closest related to three cultivated varieties

    Analysing the elasticity difference tensor of general relativity

    Get PDF
    The elasticity difference tensor, used in [1] to describe elasticity properties of a continuous medium filling a space-time, is here analysed from the point of view of the space-time connection. Principal directions associated with this tensor are compared with eigendirections of the material metric. Examples concerning spherically symmetric and axially symmetric space-times are then presented.Comment: 17 page

    Development and annotation of perennial Triticeae ESTs and SSR markers.

    Get PDF
    Triticeae contains hundreds of species of both annual and perennial types. Although substantial genomic tools are available for annual Triticeae cereals such as wheat and barley, the perennial Triticeae lack sufficient genomic resources for genetic mapping or diversity research. To increase the amount of sequence information available in the perennial Triticeae, three expressed sequence tag (EST) libraries were developed and annotated for Pseudoroegneria spicata, a mixture of both Elymus wawawaiensis and E. lanceolatus, and a Leymus cinereus x L. triticoides interspecific hybrid. The ESTs were combined into unigene sets of 8 780 unigenes for P. spicata, 11 281 unigenes for Leymus, and 7 212 unigenes for Elymus. Unigenes were annotated based on putative orthology to genes from rice, wheat, barley, other Poaceae, Arabidopsis, and the non-redundant database of the NCBI. Simple sequence repeat (SSR) markers were developed, tested for amplification and polymorphism, and aligned to the rice genome. Leymus EST markers homologous to rice chromosome 2 genes were syntenous on Leymus homeologous groups 6a and 6b (previously 1b), demonstrating promise for in silico comparative mapping. All ESTs and SSR markers are available on an EST information management and annotation database (http://titan.biotec.uiuc.edu/triticeae/)

    Finite-Size Corrections to Anomalous Dimensions in N=4 SYM Theory

    Full text link
    The scaling dimensions of large operators in N=4 supersymmetric Yang-Mills theory are dual to energies of semiclassical strings in AdS(5)xS(5). At one loop, the dimensions of large operators can be computed with the help of Bethe ansatz and can be directly compared to the string energies. We study finite-size corrections for Bethe states which should describe quantum corrections to energies of extended semiclassical strings.Comment: 10 page

    Gadoxetate-enhanced abbreviated MRI is highly accurate for hepatocellular carcinoma screening.

    Get PDF
    The primary objective was to compare the performance of 3 different abbreviated MRI (AMRI) sets extracted from a complete gadoxetate-enhanced MRI obtained for hepatocellular carcinoma (HCC) screening. Secondary objective was to perform a preliminary cost-effectiveness analysis, comparing each AMRI set to published ultrasound performance for HCC screening in the USA. This retrospective study included 237 consecutive patients (M/F, 146/91; mean age, 58 years) with chronic liver disease who underwent a complete gadoxetate-enhanced MRI for HCC screening in 2017 in a single institution. Two radiologists independently reviewed 3 AMRI sets extracted from the complete exam: non-contrast (NC-AMRI: T2-weighted imaging (T2wi)+diffusion-weighted imaging (DWI)), dynamic-AMRI (Dyn-AMRI: T2wi+DWI+dynamic T1wi), and hepatobiliary phase AMRI (HBP-AMRI: T2wi+DWI+T1wi during the HBP). Each patient was classified as HCC-positive/HCC-negative based on the reference standard, which consisted in all available patient data. Diagnostic performance for HCC detection was compared between sets. Estimated set characteristics, including historical ultrasound data, were incorporated into a microsimulation model for cost-effectiveness analysis. The reference standard identified 13/237 patients with HCC (prevalence, 5.5%; mean size, 33.7 ± 30 mm). Pooled sensitivities were 61.5% for NC-AMRI (95% confidence intervals, 34.4-83%), 84.6% for Dyn-AMRI (60.8-95.1%), and 80.8% for HBP-AMRI (53.6-93.9%), without difference between sets (p range, 0.06-0.16). Pooled specificities were 95.5% (92.4-97.4%), 99.8% (98.4-100%), and 94.9% (91.6-96.9%), respectively, with a significant difference between Dyn-AMRI and the other sets (p < 0.01). All AMRI methods were effective compared with ultrasound, with life-year gain of 3-12 months against incremental costs of US$ < 12,000. NC-AMRI has limited sensitivity for HCC detection, while HBP-AMRI and Dyn-AMRI showed excellent sensitivity and specificity, the latter being slightly higher for Dyn-AMRI. Cost-effectiveness estimates showed that AMRI is effective compared with ultrasound. • Comparison of different abbreviated MRI (AMRI) sets reconstructed from a complete gadoxetate MRI demonstrated that non-contrast AMRI has low sensitivity (61.5%) compared with contrast-enhanced AMRI (80.8% for hepatobiliary phase AMRI and 84.6% for dynamic AMRI), with all sets having high specificity. • Non-contrast and hepatobiliary phase AMRI can be performed in less than 14 min (including set-up time), while dynamic AMRI can be performed in less than 17 min. • All AMRI sets were cost-effective for HCC screening in at-risk population in comparison with ultrasound

    Search for composite and exotic fermions at LEP 2

    Get PDF
    A search for unstable heavy fermions with the DELPHI detector at LEP is reported. Sequential and non-canonical leptons, as well as excited leptons and quarks, are considered. The data analysed correspond to an integrated luminosity of about 48 pb^{-1} at an e^+e^- centre-of-mass energy of 183 GeV and about 20 pb^{-1} equally shared between the centre-of-mass energies of 172 GeV and 161 GeV. The search for pair-produced new leptons establishes 95% confidence level mass limits in the region between 70 GeV/c^2 and 90 GeV/c^2, depending on the channel. The search for singly produced excited leptons and quarks establishes upper limits on the ratio of the coupling of the excited fermio

    Search for W' bosons decaying to an electron and a neutrino with the D0 detector

    Get PDF
    This Letter describes the search for a new heavy charged gauge boson W' decaying into an electron and a neutrino. The data were collected with the D0 detector at the Fermilab Tevatron proton-antiproton Collider at a center-of-mass energy of 1.96 TeV, and correspond to an integrated luminosity of about 1 inverse femtobarn. Lacking any significant excess in the data in comparison with known processes, an upper limit is set on the production cross section times branching fraction, and a W' boson with mass below 1.00 TeV can be excluded at the 95% C.L., assuming standard-model-like couplings to fermions. This result significantly improves upon previous limits, and is the most stringent to date.Comment: submitted to Phys. Rev. Let
    corecore