2,831 research outputs found

    Mycobacteria Target DC-SIGN to Suppress Dendritic Cell Function

    Get PDF
    Mycobacterium tuberculosis represents a world-wide health risk and immunosuppression is a particular problem in M. tuberculosis infections. Although macrophages are primarily infected, dendritic cells (DCs) are important in inducing cellular immune responses against M. tuberculosis. We hypothesized that DCs represent a target for M. tuberculosis and that the observed immuno-suppression results from modulation of DC functions. We demonstrate that the DC-specific C-type lectin DC-SIGN is an important receptor on DCs that captures and internalizes intact Mycobacterium bovis bacillus Calmette-Guérin (BCG) through the mycobacterial cell wall component ManLAM. Antibodies against DC-SIGN block M. bovis BCG infection of DCs. ManLAM is also secreted by M. tuberculosis–infected macrophages and has been implicated as a virulence factor. Strikingly, ManLAM binding to DC-SIGN prevents mycobacteria- or LPS-induced DC maturation. Both mycobacteria and LPS induce DC maturation through Toll-like receptor (TLR) signaling, suggesting that DC-SIGN, upon binding of ManLAM, interferes with TLR-mediated signals. Blocking antibodies against DC-SIGN reverse the ManLAM-mediated immunosuppressive effects. Our results suggest that M. tuberculosis targets DC-SIGN both to infect DCs and to down-regulate DC-mediated immune responses. Moreover, we demonstrate that DC-SIGN has a broader pathogen recognition profile than previously shown, suggesting that DC-SIGN may represent a molecular target for clinical intervention in infections other than HIV-1

    Uncovering cold disruption of the circadian clock in poplar

    Get PDF
    Dormancy is an adaptive mechanism that allows woody plants to survive at low temperatures during the winter. Disruption of circadian clock genes in winter or under low temperatures, both in long days as in short days, were described in our group few years ago (Ramos et al., 2005). Basic mechanisms of the circadian clock function are similar in herbaceous as well as in woody plants although there are differences in their response to low temperatures (Bieniawska et al., 2008). Woody plants growing in daylight conditions should have a specific transcriptional control above the circadian clock genes, which is responsible of their constitutive transcriptional activation observed under low temperatures conditions. In order to understand this regulatory process, we are analyzing the behavior of a circadian clock gene in poplar. To this aim, we have isolated its promoter region and fused to the luciferase reporter gene. This construct has been transformed into Populus tremula x P. alba 717-1B4 INRA clone. Here we present the characterization of these transgenic lines under different conditions of light and temperature

    A Working Hypothesis for the Role of the Cerebellum in Impulsivity and Compulsivity

    Get PDF
    Growing evidence associates cerebellar abnormalities with several neuropsychiatric disorders in which compulsive symptomatology and impulsivity are part of the disease pattern. Symptomatology of autism, addiction, obsessive-compulsive (OCD), and attention deficit/hyperactivity (ADHD) disorders transcends the sphere of motor dysfunction and essentially entails integrative processes under control of prefrontal-thalamic-cerebellar loops. Patients with brain lesions affecting the cortico-striatum thalamic circuitry and the cerebellum indeed exhibit compulsive symptoms. Specifically, lesions of the posterior cerebellar vermis cause affective dysregulation and deficits in executive function. These deficits may be due to impairment of one of the main functions of the cerebellum, implementation of forward internal models of the environment. Actions that are independent of internal models may not be guided by predictive relationships or a mental representation of the goal. In this review article, we explain how this deficit might affect executive functions. Additionally, regionalized cerebellar lesions have been demonstrated to impair other brain functions such as the emergence of habits and behavioral inhibition, which are also altered in compulsive disorders. Similar to the infralimbic cortex, clinical studies and research in animal models suggest that the cerebellum is not required for learning goal-directed behaviors, but it is critical for habit formation. Despite this accumulating data, the role of the cerebellum in compulsive symptomatology and impulsivity is still a matter of discussion. Overall, findings point to a modulatory function of the cerebellum in terminating or initiating actions through regulation of the prefrontal cortices. Specifically, the cerebellum may be crucial for restraining ongoing actions when environmental conditions change by adjusting prefrontal activity in response to the new external and internal stimuli, thereby promoting flexible behavioral control. We elaborate on this explanatory framework and propose a working hypothesis for the involvement of the cerebellum in compulsive and impulsive endophenotypes

    Validation of Cell-Free DNA Collection Tubes for Determination of EGFR Mutation Status in Liquid Biopsy from NSCLC Patients

    Get PDF
    Altres ajuts: Roche Farma S.A., Spain.Precision medicine has revolutionized the understanding and treatment of cancer by identifying subsets of patients who are amenable to specific treatments according to their molecular characteristics, as exemplified by epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer (NSCLC). Although tissue biopsy is the gold standard for determining molecular alterations in tumors, its limitations have prompted the development of new techniques for studying tumor biomarkers in liquid biopsies, such as mutation analysis in cell-free DNA (cfDNA). cfDNA analysis can accurately determine tumor progression and prognosis and more effectively identify appropriate targeted therapies. However, cfDNA is vulnerable, particularly during plasma sample shipping. We compared the cell- and DNA-stabilizing properties of cell-free DNA blood collection tubes (BCTs) with those of the traditional shipping method (frozen plasma) for EGFR mutation testing using the cobas ® EGFR Mutation Test v2 in a prospective cohort of 49 patients from three different Spanish hospitals. In total, 98 NSCLC samples, two from each patient, were studied; five of the 49 cases were considered invalid by cobas ® with one of the two shipping methods analyzed. After excluding these samples, we analyzed 88 samples from 44 patients. Considering the current methodology (frozen plasma) for sending samples as the gold standard, we evaluated the sensitivity and specificity of cfDNA BCT shipment. The global agreement between the two methods was 95.4%, with 100% sensitivity and 94.6% specificity for the cfDNA BCTs. cfDNA BCTs had a positive predictive value of 81.8% and negative predictive value of 100%. cfDNA BCTs have the same sensitivity for EGFR mutation analysis in liquid biopsy as the current methodology and very high specificity. They also have some additional advantages in terms of collection and further shipment. Therefore, cfDNA BCTs can be perfectly incorporated into the routine practice for EGFR mutation determination. Roche Farma S.A., Spain. The online version of this article (10.1007/s40487-019-00099-9) contains supplementary material, which is available to authorized users

    A prevalent mutation with founder effect in Spanish recessive dystrophic epidermolysis bullosa families

    Get PDF
    Background: Recessive Dystrophic Epidermolysis Bullosa (RDEB) is a genodermatosis caused by more than 500 different mutations in the COL7A1 gene and characterized by blistering of the skin following a minimal friction or mechanical trauma. The identification of a cluster of RDEB pedigrees carrying the c.6527insC mutation in a specific area raises the question of the origin of this mutation from a common ancestor or as a result of a hotspot mutation. The aim of this study was to investigate the origin of the c.6527insC mutation. Methods: Haplotypes were constructed by genotyping nine single nucleotides polymorphisms (SNPs) throughout the COL7A1 gene. Haplotypes were determined in RDEB patients and control samples, both of Spanish origin. Results: Sixteen different haplotypes were identified in our study. A single haplotype cosegregated with the c.6527insC mutation. Conclusion: Haplotype analysis showed that all alleles carrying the c.6527insC mutation shared the same haplotype cosegregating with this mutation (CCGCTCAAA_6527insC), thus suggesting the presence of a common ancestor.This work was supported in part by grants from Spanish Ministry of Science and Innovation (SAF2007-61019 and SAF2010-16976) and INTRA/08/714 from Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER)

    Dysfunctional 3D model based on structural and neuropsychological information

    Get PDF
    Acquired brain injury (ABI) 1-2 refers to any brain damage occurring after birth. It usually causes certain damage to portions of the brain. ABI may result in a significant impairment of an individuals physical, cognitive and/or psychosocial functioning. The main causes are traumatic brain injury (TBI), cerebrovascular accident (CVA) and brain tumors. The main consequence of ABI is a dramatic change in the individuals daily life. This change involves a disruption of the family, a loss of future income capacity and an increase of lifetime cost. One of the main challenges in neurorehabilitation is to obtain a dysfunctional profile of each patient in order to personalize the treatment. This paper proposes a system to generate a patient s dysfunctional profile by integrating theoretical, structural and neuropsychological information on a 3D brain imaging-based model. The main goal of this dysfunctional profile is to help therapists design the most suitable treatment for each patient. At the same time, the results obtained are a source of clinical evidence to improve the accuracy and quality of our rehabilitation system. Figure 1 shows the diagram of the system. This system is composed of four main modules: image-based extraction of parameters, theoretical modeling, classification and co-registration and visualization module

    The hypomethylation of imprinted genes in IVF/ICSI placenta samples is associated with concomitant changes in histone modifications

    Get PDF
    Although more and more children are born by Assisted Reproductive Technologies (ART), ART safety has not fully been demonstrated. Notably, ART could disturb the delicate step of implantation, and trigger placenta-related adverse outcomes with potential long-term effects, through disrupted epigenetic regulation. We have previously demonstrated that placental DNA methylation was significantly lower after IVF/ICSI than following natural conception at two differentially methylated regions (DMRs) associated with imprinted genes (IGs): H19/IGF2 and KCNQ1OT1. As histone modifications are critical for placental physiology, the aim of this study was to profile permissive and repressive histone marks in placenta biopsies to reveal a better understanding of the epigenetic changes in the context of ART. Utilizing chromatin immunoprecipitation (ChIP) coupled with quantitative PCR, permissive (H3K4me3, H3K4me2, and H3K9ac) and repressive (H3K9me3 and H3K9me2) post-translational histone modifications were quantified. The analyses revealed a significantly higher quantity of H3K4me2 precipitation in the IVF/ICSI group than in the natural conception group for H19/IGF2 and KCNQ1OT1 DMRs (P = 0.016 and 0.003, respectively). Conversely, the quantity of both repressive marks at H19/IGF2 and SNURF DMRs was significantly lower in the IVF/ICSI group than in the natural conception group (P = 0.011 and 0.027 for H19/IGF2; and P = 0.010 and 0.035 for SNURF). These novel findings highlight that DNA hypomethylation at imprinted DMRs following ART is linked with increased permissive/decreased repressive histone marks, altogether promoting a more permissive chromatin conformation. This concomitant change in epigenetic state at IGs at birth might be an important developmental event because of ART manipulations

    Novel winter-associated regulators of the circadian clock in poplar

    Full text link
    Background Winter dormancy is an adaptive mechanism that allows trees from temperate and cold regions to survive the harsh conditions of this season. Critical steps of this process are strongly influenced by environmental cues, mainly daylength and temperature. The mechanism that integrates these signals is the circadian clock. Despite the importance of the correct functioning of the clock for the healthy state of the plant [1], low temperatures cause the disruption of the circadian clock in trees, which consists in a transcriptional activation followed by an arrhythmic expression [2-5]. In this work we uncover winter-associated regulators of the circadian clock in poplar. Methods Firstly, we made a transcriptional fusion with the promoter of LHY2, a circadian clock gene, and the luciferase gene. This construct was used to generate transgenic poplars (717-1B4, INRA clone). With these events we characterized the expression of this promoter under different conditions of photoperiod and temperature. To this aim we have set up a circadian luminiscence assay registering luciferase activity from leaf discs with a luminometer. Then we carried out a Yeast One Hybrid (Y1H) screening with a library enriched in winter-associated factors and using this promoter as bait. Candidate regulators are tested in vivo using Golden Braid technology [6] and transient assays in poplar, by which we overexpressed and silenced the candidate genes. Results and Conclusions Here we present the characterization of the Populus tremula x alba LHY2 promoter under three different photoperiod conditions. Our results indicate the selected promoter region contains the circadian elements as well as the luciferase activity shows the expected expression under both long and short days. In the Y1H screening, we found several candidates that are classified either as transcription factors or chromatin remodelers. We will discuss the possible role of these proteins as regulators of the poplar circadian clock

    The involvement of 5-methyl cytosine DNA Demethylases in the dormant-growth transition in poplar

    Get PDF
    Background Woody species are highly adapted to their habitats. In response to environmental cues woody perennials trigger self-protective developmental programmes, in which signal transduction, transcriptional reprogramming and epigenetic regulation could participate in defining the winter dormancy state. Winter dormancy is the mechanism used by perennial plants to survive the harsh conditions of winter in temperate and cold regions and determines the geographical distribution of tree species (Chuine and Beaubien 2001; Horvath et al. 2003; Allona et al. 2008). Epigenetic control of winter dormancy in woody plants is barely known. Among the important epigenetic marks, 5-methyl cytosine (5mC) regulates gene expression in animals and plants. Global changes in 5mC DNA methylation have been shown in the transition of developmental stages in plants such as chestnut bud set and burst, flowering in azalea, aging in pine trees among other. However, the mechanism and the enzymes involved in the modification of the methylome and its control over those development processes remain to be identified. Our previous results showed higher DNA methylation and less acetylated Lys 8 of histone H4 global levels in poplar stem during winter dormancy compared to active growing season (Conde et al. 2013). In this study we focus in the understanding of the molecular mechanism behind these changes in DNA methylation profile and their role in the control of winter dormancy. Methods Analysis of the 5-methyl cytosine levels by the application of the immunofluorescence-based method set up in our lab, in stem vibratome sections cut from hybrid poplar (Populus tremula x alba) growing in the field at different stages of winter dormancy process. To develop a protocol for buds paraffin wax embedding to analyze the level of 5-methyl cytosine by applying our immunofluorescence-based method in poplar apex microtome sections in diferents stages of winter dormancy. RT-PCR analysis to determine the profile of gene expresion at diferent stages of winter dormancy involved in modification of DNA methylation profile. Hybrid poplar transformation to obtain transgenic lines with modified expression of a demethylase and phenological experiments with selected lines. Results and Conclusions The immunolocalization assays performed in poplar stem sections showed that DNA methylation leves fall suddenly when trees coming from the dormant state are near to restore the growing season. We have determined the spatial distribution of DNA methylation changes in this organ. We have identified two poplar homologs to Arabidopsis DME gene: PtaDML8/PtaDML10. The DME protein promotes global DNA demethylation along the genome during endosperm development. Our RT-PCR analyses indicate that the expression of PtaDML8/PtaDML10 genes increases significantly when trees are near to restart growing after winter dormancy. The phenologycal assays showed that PtaDML8/PtaDML10 knockdown plants have a delayed in resuming of growth after dormancy. Taken together, we hypothesize that an active control of the 5mC DNA methylation might play a key role in winter dormancy and that 5mC demethylases would be crucial in this process
    • …
    corecore