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ABSTRACT

Introduction: Precision medicine has revolu-
tionized the understanding and treatment of
cancer by identifying subsets of patients who
are amenable to specific treatments according
to their molecular characteristics, as exempli-
fied by epidermal growth factor receptor (EGFR)
mutations in non-small cell lung cancer
(NSCLC). Although tissue biopsy is the gold
standard for determining molecular alterations
in tumors, its limitations have prompted the

development of new techniques for studying
tumor biomarkers in liquid biopsies, such as
mutation analysis in cell-free DNA (cfDNA).
cfDNA analysis can accurately determine tumor
progression and prognosis and more effectively
identify appropriate targeted therapies. How-
ever, cfDNA is vulnerable, particularly during
plasma sample shipping.
Objective: We compared the cell- and DNA-
stabilizing properties of cell-free DNA blood
collection tubes (BCTs) with those of the tradi-
tional shipping method (frozen plasma) for
EGFR mutation testing using the cobas� EGFR
Mutation Test v2 in a prospective cohort of 49
patients from three different Spanish hospitals.
Methods: In total, 98 NSCLC samples, two from
each patient, were studied; five of the 49 cases
were considered invalid by cobas� with one of
the two shipping methods analyzed. After
excluding these samples, we analyzed 88 sam-
ples from 44 patients. Considering the current
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methodology (frozen plasma) for sending sam-
ples as the gold standard, we evaluated the
sensitivity and specificity of cfDNA BCT
shipment.
Results: The global agreement between the two
methods was 95.4%, with 100% sensitivity and
94.6% specificity for the cfDNA BCTs. cfDNA
BCTs had a positive predictive value of 81.8%
and negative predictive value of 100%.
Conclusion: cfDNA BCTs have the same sensi-
tivity for EGFR mutation analysis in liquid
biopsy as the current methodology and very
high specificity. They also have some additional
advantages in terms of collection and further
shipment. Therefore, cfDNA BCTs can be per-
fectly incorporated into the routine practice for
EGFR mutation determination.
Funding: Roche Farma S.A., Spain.
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INTRODUCTION

Precision medicine has revolutionized the
understanding and treatment of cancer by
identifying subsets of patients who, according
to their molecular characteristics, are amenable
to specific treatments. Examples of predictive
biomarkers of treatment outcomes include
mutations in RAS and BRAF in colorectal can-
cer, BRAF in melanoma, c-KIT and PDGFRa in
gastrointestinal stromal tumors, and mutations
in epidermal growth factor receptor (EGFR) in
non-small cell lung cancer (NSCLC). In the
particular case of lung cancer, patients are
screened for molecular alterations in EGFR,
ALK, and ROS1 and for PD-L1 protein expres-
sion to optimize treatment outcomes. The
identification of EGFR mutations as a key driver
event in lung adenocarcinoma patients led to
the development of small molecule tyrosine
kinase inhibitors (TKIs); including first-genera-
tion (gefitinib [1, 2], erlotinib [3]), second-gen-
eration (afatinib [4]), and third-generation
(osimertinib [5, 6], rociletinib (CO1686) [7])
inhibitors. Accordingly, the identification of
driver mutations in EGFR that in turn were
actionable alterations has had a significant

impact on molecular profiling of biomarker-
driven targeted therapies in NSCLC, as well as in
many other tumors [8, 9].

Currently, tissue biopsy is the gold standard
for the determination of molecular alterations
in lung cancer tumors. However, it has limita-
tions. For example, most biopsies employ small-
or fine-needle aspiration techniques that are
often insufficient for genomic analysis after the
initial histology diagnosis. The small size of the
biopsy and cytology specimens also makes it
impossible to determine the presence of residual
disease by classical hematoxylin and eosin
pathology and for accurate diagnosis at initial
stages [10, 11]. In addition, both inter- and
intratumoral heterogeneity may limit the
genotyping tests results, which can have a sig-
nificant impact on treatment, particularly when
the mechanisms for resistance to EGFR inhibi-
tors need to be evaluated [12]. In this regard,
EGFR mutant-positive lung adenocarcinoma
has been associated with moderate-to-high
intratumoral heterogeneity in all NSCLC sub-
types, which necessitates the analysis of EGFR
mutations in circulating tumor DNA due to its
ability to overcome intratumoral heterogeneity
[13–15]. Finally, it is worth mentioning the risks
associated with biopsy in older lung cancer
patients and patients with an inaccessible
tumor location.

Accordingly, new techniques have been
developed to study tumor biomarkers in liquid
biopsies [16–18], such as mutation analysis in
plasma-derived circulating cell-free DNA
(cfDNA), which is released by tumor cells in the
blood and which is considered the optimal
candidate for clinical application [19–22]. In
addition, cfDNA analysis can accurately deter-
mine tumor progression, diagnosis, and possi-
ble distant metastasis, it can predict prognosis
as well as more effectively individualize the
targeted therapy, and it is less invasive for the
patient. Moreover, liquid biopsy is the only
sample source that has been officially approved
for clinical use in lung cancer patients
[16, 17, 23, 24].

However, it is still difficult to preserve the
integrity of the cfDNA population, particularly
during plasma sample shipping. Blood collec-
tion procedures have to be carefully considered

132 Oncol Ther (2019) 7:131–139



to maintain cfDNA integrity until its analysis,
especially temperature and preservative condi-
tions [25]. Accordingly, the main objective of
this work was to analyze the concordance in
cell- and DNA-stabilizing properties between
cell-free DNA blood collection tubes (cfDNA
BCTs) and the traditional shipping method,
comparing the performance of the two
methodologies in the detection of the EGFR
mutational state. EGFR testing was performed
using the cobas� EGFR Mutation Test v2 in all
liquid biopsy samples. This technique is a real-
time polymerase chain reaction (RT-PCR)-based
test that can identify 42 different EGFR gene
mutations in exons 18, 19, 20, and 21 of the
gene; it has different detection limits for tissue-
derived DNA and plasma-derived cfDNA sam-
ples [26]. Moreover, a secondary objective was
to provide a proof of concept of an alternative
shipment method for these specific blood sam-
ples to an external laboratory as a real-life clin-
ical practice experience.

METHODS

Compliance with Ethics Guidelines

The Independent Ethics Committee of Arnau
Vilanova Hospital approved the study protocol,
and all patients provided written informed
consent before their inclusion, in addition to
permission for the use of their blood samples
(EDTA tubes and BCTs) in EGFR mutation
analysis. The study was carried out in accor-
dance with the Declaration of Helsinki and its
amendments and with all applicable regulatory
requirements.

Sample Collection

A total of 49 patients diagnosed with advanced
NSCLC from three Spanish centers (Hospital del
Doctor Peset, Hospital General de Castellon,
and Hospital Arnau de Vilanova) participated in
this study. The diagnosis was consistent with
the clinical practice of the centers, with oncol-
ogists including patients meeting either of the
following criteria: (a) absence of a tissue biopsy

sample to analyze EGFR mutational status for a
first-line treatment or due to high heterogeneity
in NSCLC where tissue biopsy was negative,
even though the clinical characteristics sug-
gested, with high probability, the presence of
EGFR mutant; and (b) patient treatment with
TKIs for monitoring and analysis of progression.

Duplicate blood samples were obtained and
shipped to Vall d’Hebron Hospital for process-
ing and storage using two distinct methods in
parallel: (1) via cell-free DNA blood collection
tubes (BCTs) (Roche), shipped at room temper-
ature; and (2) via standard K2EDTA tubes con-
taining plasma (obtained via double
centrifugation of blood at 3000 rpm within
20 min of blood extraction and frozen imme-
diately at -80 �C), shipped frozen on dry ice
(shipments were made weekly). Samples were
collected within a 9-month period.

Sample Processing and DNA Extraction
for Liquid Biopsy

In total, 98 NSCLC liquid biopsy samples were
included in the validation. BCTs were received
at room temperature and were submitted to an
initial centrifugation at 30009g for 10 min.
Supernatants were collected and centrifuged at
16,0009g for 1 min to obtain the plasma; sev-
eral 1.5-mL aliquots were then made. Circulat-
ing cfDNA was then obtained via automated
DNA extraction from the 1.5-mL plasma sam-
ples using a QIAsymphony DSP Virus/Pathogen
Kit (Qiagen) following the manufacturer’s pro-
tocol on a QIAsymphony instrument. All sam-
ples were eluted in 85 lL of elution buffer, 75 lL
of which was used in the mutation PCR
protocol.

EGFR Mutation Status Analysis in cfDNA

Mutation analysis was performed by qPCR using
a cobas� EGFR Mutation Test v2 kit (Roche).
Briefly, 75 lL of each DNA was used in each
assay on a cobas� Z480 analyzer. This kit detects
42 EGFR mutations (including G19A/S/C in
exon 18, deletions and complex mutations in
exon 19, S768I, T790 M, and exon 20 insertions,
and L858R in exon 21). A standard curve created
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using the internal control Cp genomic DNA was
used to calculate the DNA concentration and
copy number, which is also represented as the
semi-quantitative index of each EGFR mutant
sample. For a sample to be classified as EGFR
mutation-positive in this analysis, it had to
contain at least one activating mutation (i.e.,
exon 19 deletion, L858R, G719x, or L861Q).

Statistical Analysis

Statistical analyses were performed with G-Stat
version 2.0. The McNemar test was used to
analysis the EGFR mutation concordance
between matched samples.

RESULTS

Concordance of EGFR Mutation Detection
in cfDNA Between cfDNA BCTs
and the Routine Plasma Shipping
Procedure

In total, 98 liquid biopsy samples were ana-
lyzed, corresponding to 49 patients from three
different hospitals, with paired samples shipped
according to the two different shipping
methodologies: (1) standard frozen plasma and
(2) cfDNA BCTs. After the plasma was received
in the laboratory and the DNA was extracted,

the EGFR mutation status was analyzed by qPCR
using a cobas� EGFR Mutation Test v2 kit
(Fig. 1). Of the 49 cases, 5 were classified as
invalid by cobas� with one of the two shipping
methodologies analyzed. The results of the
analysis, presented in Fig. 2a, revealed an 85.7%
concordance between the two techniques. The
rate improved to 95.4% after the exclusion of
the five invalid samples (Fig. 2b). Concordance
was defined as EGFR mutation-positive or EGFR
mutation-negative, and the mutation type was
the same in all EGFR-mutated samples, as
shown in Supplementary Table 1.

Considering the current methodology (fro-
zen plasma) for sending samples as the gold
standard, we evaluated the sensitivity and
specificity of the cfDNA BCT shipment. The
McNemar test showed that there was no sig-
nificant difference between the two shipping
methods (P = 0.157).

The global agreement between the two
shipping methods was 95.4%, with a sensitivity
of 100% and specificity of 94.6% for the cfDNA
BCTs. Further analysis of the cfDNA BCTs
determined a positive predictive value of 81.8%
and negative predictive value of 100% (Fig. 2b).

Finally, we analyzed the discordant results.
As mentioned above, five samples were consid-
ered invalid by cobas� in one of the two ship-
ping procedures. The EGFR mutation statuses of
the two discordant results in plasma were

Fig. 1 Schematic representation of patients’ samples and the results of the EGFR mutation analysis
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compared with their corresponding results
obtained via cobas� EGFR Mutation Test v1 kit
analysis of formalin-fixed paraffin-embedded
(FFPE) biopsy samples; the findings confirmed
one of the results: an EGFR-del19 in the FFPE
results was found to be EGFR-del19 in the
cfDNA BCT results (Fig. 3).

DISCUSSION

Plasma cfDNA is emerging as a clinically rele-
vant biomarker for the management and
surveillance of cancer. Our results show that the

pre-analytical workflow for liquid biopsy from
blood collection and shipping to plasma
preparation, such as for EGFR mutation status
testing, is simpler for cfDNA BCTs than for
standard K2EDTA BCTs. For EGFR mutation
analysis, cfDNA BCTs in liquid biopsy have the
same sensitivity as the current methodology
and very high specificity. Additionally, the
semi-quantitative indices obtained by the two
different workflow approaches show high
concordance.

The methods used for whole blood process-
ing, preservation, and storage are important
considerations in circulating tumor DNA

Fig. 2 Comparison between cfDNA obtained from frozen
plasma and BCT samples for determining EGFR mutation
status. a All samples included in this study. b Comparative

analysis of the samples analyzed according to the two
different shipping methods

Fig. 3 Comparison of EGFR mutation status between cfDNA and FFPE samples
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analysis [25, 27, 28]. Our results indicate that
BCTs are preferable for the collection of circu-
lating DNA in a clinical setting due to their
favorable storage and shipping conditions.
Other studies indicated that BCTs are preferable
for the room-temperature preservation of
cfDNA for up to 5 days and for preventing the
release of genomic DNA, both in oncology and
prenatal diagnostics [29–32].

Several pre-analytical steps are crucial to
obtain good concordant mutation results
between liquid biopsy and FFPE samples,
beyond the natural behavior of the tumor, its
shedding capacity and clinical stage (III or IV),
the inter- and intratumoral heterogeneity, and
tumor type. Some are related to the sample
handling, including plasma extraction proto-
cols, freeze/thaw cycles, sample shipment, and
timing, which can affect the final mutation
analysis of the EGFR gene in liquid biopsy.

We analyzed all discordant cases in duplicate
to rule out the presence of artifacts. However, we
did not include any additional methods to
resolve discordant results because the protocol
used to analyze the EGFR mutations was
designed to consume all cfDNA obtained in each
extraction. We thus had no additional cfDNA to
perform further analysis with any high-sensi-
tivity technique that might be recommended,
such as droplet digital PCR or BEAMing. In line
with ASCO-CAP recommendations [18], we
compared the EGFR mutation results with those
of some FFPE samples that had been previously
analyzed in our laboratory with the cobas� EGFR
Mutation Test v1, which is approved for muta-
tion analysis in FFPE samples [33]. In this com-
parison, we only observed one EGFR mutant
(Del19) in an FFPE sample, which was also
detected by BCT analysis 2 months later.

In addition, our results are consistent with
others showing that cfDNA BCTs can replace
the standard collection and transport method
due to their strong ability to detect tumor-
specific mutations in key driver genes such as
BRAF, KRAS, and PIK3CA in various solid can-
cers [34] and additional genes (EGFR and c-KIT)
tested by BEAMing or Safe-SeqS procedures [35].

These cfDNA BCTs have some additional
advantages in the collection and shipment
processes: (1) they eliminate the need for onsite

plasma processing and additional manipulation
of samples by different individuals in the labo-
ratories, reducing the variability in the pre-an-
alytical steps and allowing standard room-
temperature shipping to the testing laboratory;
(2) they provide a more standardized protocol
that can be easily implemented in clinical lab-
oratory routine; and (3) the process is less
expensive. The price of EDTA tubes and dry ice
special courier services is about €78 per sample,
whereas BCTs and standard courier is about €11.
Additionally, the dry ice service in this study
has been established at once per week, which
directly affects the EGFR test turnaround time.

This study has some limitations, such as a
low number of samples included and a lack of
extra cfDNA to perform additional experiments
to elucidate the numbers of positive and nega-
tives cases with both approaches.

CONCLUSIONS

The use of cfDNA BCTs for the EGFR mutation
analysis in liquid biopsy presents the same
sensitivity as the current methodology, and
very high specificity. These cfDNA BCTs have
additional advantages in the collection and
further shipment processes. Therefore, due to
their high performance, these tubes can be
perfectly incorporated into the clinical routine
for this EGFR mutational determination.
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