110 research outputs found

    Local Luminous Infrared Galaxies. III. Co-evolution of Black Hole Growth and Star Formation Activity?

    Full text link
    Local luminous infrared (IR) galaxies (LIRGs) have both high star formation rates (SFR) and a high AGN (Seyfert and AGN/starburst composite) incidence. Therefore, they are ideal candidates to explore the co-evolution of black hole (BH) growth and star formation (SF) activity, not necessarily associated with major mergers. Here, we use Spitzer/IRS spectroscopy of a complete volume-limited sample of local LIRGs (distances of <78Mpc). We estimate typical BH masses of 3x10^7 M_sun using [NeIII]15.56micron and optical [OIII]5007A gas velocity dispersions and literature stellar velocity dispersions. We find that in a large fraction of local LIRGs the current SFR is taking place not only in the inner nuclear ~1.5kpc region, as estimated from the nuclear 11.3micron PAH luminosities, but also in the host galaxy. We next use the ratios between the SFRs and BH accretion rates (BHAR) to study whether the SF activity and BH growth are contemporaneous in local LIRGs. On average, local LIRGs have SFR to BHAR ratios higher than those of optically selected Seyferts of similar AGN luminosities. However, the majority of the IR-bright galaxies in the RSA Seyfert sample behave like local LIRGs. Moreover, the AGN incidence tends to be higher in local LIRGs with the lowest SFRs. All this suggests that in local LIRGs there is a distinct IR-bright star forming phase taking place prior to the bulk of the current BH growth (i.e., AGN phase). The latter is reflected first as a composite and then as a Seyfert, and later as a non-LIRG optically identified Seyfert nucleus with moderate SF in its host galaxy.Comment: Accepted for publication in Ap

    Primoinfección por virus del herpes simp le tipo 1. Manejo farmacológico y caracteristicas clínicas

    Get PDF
    El presente artículo reporta un caso clínico de gingivoestomatitis herpética primaria y una breve revisión de los medicamentos usados para tratar la infección por virus del herpes simple (HSV). Se presenta un paciente con múltiples ulceraciones confluentes tanto en la cara ventral como en la dorsal de la lengua y en los labios, compatible con gingivoestomatitis herpética primaria. Esta forma de presentarse las ulceraciones y la edad del paciente son frecuentes en pacientes VIH positivo (Virus de la inmunodeficiencia humana), esto no pudo ser comprobado en el caso ya que el paciente dejo de asistir a consulta luego de recibido el tratamiento. El tratamiento instaurado fue aciclovir tabletas 200 mg cada 6 horas vía oral por 10 días. Cabe mencionar que los tratamientos para el virus del herpes simple con aciclovir no están aprobados por la Administración de Alimentos y Drogas de los Estados Unidos (FDA siglas en inglés) pero si son aceptados por el Centro de Control de Enfermedades (CDC siglas en ingles), también se utilizó gel de polivinilpirrolidona, hialuronato de sodio para facilitar la deglución del paciente. (DUAZARY 2011 No. 2, 199 - 205

    Extinction in the 11.2 micron PAH band and the low L_11.2/L_IR in ULIRGs

    Full text link
    We present a method for recovering the intrinsic (extinction-corrected) luminosity of the 11.2 micron PAH band in galaxy spectra. Using 105 high S/N Spitzer/IRS spectra of star-forming galaxies, we show that the equivalent width ratio of the 12.7 and 11.2 micron PAH bands is independent on the optical depth, with small dispersion of ~5% indicative of a nearly constant intrinsic flux ratio R_int = (f_12.7/f_11.2)_int = 0.377 +/- 0.020. Conversely, the observed flux ratio, R_obs = (f_12.7/f_11.2)_obs strongly correlates with the silicate strength (S_sil) confirming that differences in R_obs reflect variation in the optical depth. The relation between R_obs and S_sil reproduces predictions for the Galactic Centre extinction law but disagrees with other laws. We calibrate the total extinction affecting the 11.2 micron PAH from R_obs, which we apply to another sample of 215 galaxies with accurate measurements of the total infrared luminosity (L_IR) to investigate the impact of extinction on L_11.2/L_IR. Correlation between L_11.2/L_IR and R_obs independently on L_IR suggests that increased extinction explains the well known decrease in the average L_11.2/L_IR at high L_IR. The extinction-corrected L_11.2 is proportional to L_IR in the range L_IR/L_sun = 10^9--10^13. These results consolidate L_11.2 as a robust tracer of star formation in galaxies.Comment: 14 pages, 9 figures, 2 tables. Accepted for publication in MNRA

    The CANDELS/SHARDS multiwavelength catalog in GOODS-N : photometry, photometric redshifts, stellar masses, emission-line fluxes, and star formation rates

    Get PDF
    We present a WFC3 F160W (H-band) selected catalog in the CANDELS/GOODS-N field containing photometry from the ultraviolet (UV) to the far-infrared (IR), photometric redshifts, and stellar parameters derived from the analysis of the multiwavelength data. The catalog contains 35,445 sources over the 171 arcmin(2) of the CANDELS F160W mosaic. The 5 sigma detection limits (within an aperture of radius 0 ''.17) of the mosaic range between H = 27.8, 28.2, and 28.7 in the wide, intermediate, and deep regions, which span approximately 50%, 15%, and 35% of the total area. The multiwavelength photometry includes broadband data from the UV (U band from KPNO and LBC), optical (HST/ACS F435W, F606W, F775W, F814W, and F850LP), near-to-mid IR (HST/WFC3 F105W, F125W, F140W, and F160W; Subaru/MOIRCS Ks; CFHT/Megacam K; and Spitzer/IRAC 3.6, 4.5, 5.8, and 8.0 mu m), and far-IR (Spitzer/MIPS 24 mu m, HERSCHEL/PACS 100 and 160 mu m, SPIRE 250, 350 and 500 mu m) observations. In addition, the catalog also includes optical medium-band data (R similar to 50) in 25 consecutive bands, lambda = 500-950 nm, from the SHARDS survey and WFC3 IR spectroscopic observations with the G102 and G141 grisms (R similar to 210 and 130). The use of higher spectral resolution data to estimate photometric redshifts provides very high, and nearly uniform, precision from z = 0-2.5. The comparison to 1485 good-quality spectroscopic redshifts up to z similar to 3 yields Delta z/(1 + z(spec)) = 0.0032 and an outlier fraction of eta = 4.3%. In addition to the multiband photometry, we release value-added catalogs with emission-line fluxes, stellar masses, dust attenuations, UV- and IR-based star formation rates, and rest-frame colors

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    Outreach activities at the Pierre Auger Observatory

    Get PDF

    A search for ultra-high-energy photons at the Pierre Auger Observatory exploiting air-shower universality

    Get PDF
    The Pierre Auger Observatory is the most sensitive detector to primary photons with energies above ∼0.2 EeV. It measures extensive air showers using a hybrid technique that combines a fluorescence detector (FD) with a ground array of particle detectors (SD). The signatures of a photon-induced air shower are a larger atmospheric depth at the shower maximum (Xmax_{max}) and a steeper lateral distribution function, along with a lower number of muons with respect to the bulk of hadron-induced background. Using observables measured by the FD and SD, three photon searches in different energy bands are performed. In particular, between threshold energies of 1-10 EeV, a new analysis technique has been developed by combining the FD-based measurement of Xmax_{max} with the SD signal through a parameter related to its muon content, derived from the universality of the air showers. This technique has led to a better photon/hadron separation and, consequently, to a higher search sensitivity, resulting in a tighter upper limit than before. The outcome of this new analysis is presented here, along with previous results in the energy ranges below 1 EeV and above 10 EeV. From the data collected by the Pierre Auger Observatory in about 15 years of operation, the most stringent constraints on the fraction of photons in the cosmic flux are set over almost three decades in energy
    corecore