2,172 research outputs found

    Dimensional hyper-reduction of nonlinear finite element models via empirical cubature

    Get PDF
    We present a general framework for the dimensional reduction, in terms of number of degrees of freedom as well as number of integration points (“hyper-reduction”), of nonlinear parameterized finite element (FE) models. The reduction process is divided into two sequential stages. The first stage consists in a common Galerkin projection onto a reduced-order space, as well as in the condensation of boundary conditions and external forces. For the second stage (reduction in number of integration points), we present a novel cubature scheme that efficiently determines optimal points and associated positive weights so that the error in integrating reduced internal forces is minimized. The distinguishing features of the proposed method are: (1) The minimization problem is posed in terms of orthogonal basis vector (obtained via a partitioned Singular Value Decomposition) rather that in terms of snapshots of the integrand. (2) The volume of the domain is exactly integrated. (3) The selection algorithm need not solve in all iterations a nonnegative least-squares problem to force the positiveness of the weights. Furthermore, we show that the proposed method converges to the absolute minimum (zero integration error) when the number of selected points is equal to the number of internal force modes included in the objective function. We illustrate this model reduction methodology by two nonlinear, structural examples (quasi-static bending and resonant vibration of elastoplastic composite plates). In both examples, the number of integration points is reduced three order of magnitudes (with respect to FE analyses) without significantly sacrificing accurac

    Acción del peróxido de hidrógeno sobre el selenio en presencia de óxidos metálicos

    Get PDF
    Extracto de la Tesis aprobada por la Universidad Central de Barcelona

    Two-scale topology optimization in computational material design: an integrated approach

    Get PDF
    The Domain Interface Method (DIM) is extended in this contribution for the case of mixed fields as encountered in multiphysics problems. The essence of the non-conforming domain decomposition technique consists in a discretization of a fictitious zero-thickness interface as in the original methodology and continuity of the solution fields across the domains is satisfied by incorporating the corresponding Lagrange Multipliers. The multifield DIM inherits the advantages of its irreducible version in the sense that the connections between non-matching meshes, with possible geometrically non-conforming interfaces, is accounted by the automatic Delaunay interface discretization without considering master and slave surfaces or intermediate surface projections as done in many established techniques, e.g. mortar methods. The multifield enhancement identifies the Lagrange multiplier field and incorporates its contribution in the weak variational form accounting for the corresponding consistent stabilization term based on a Nitsche method. This type of constraint enforcement circumvents the appearance of instabilities when the Ladyzhenskaya–Babuška–Brezzi (LBB) condition is not fulfilled by the chosen discretization. The domain decomposition framework is assessed in a large deformation setting for mixed displacement/pressure formulations and coupled thermomechanical problems. The continuity of the mixed field is studied in well selected benchmark problems for both mixed formulations and the objectivity of the response is compared to reference monolithic solutions. Results suggest that the presented strategy shows sufficient potential to be a valuable tool in situations where the evolving physics at particular domains require the use of different spatial discretizations or field interpolations

    Altered machinery of protein synthesis in Alzheimer's: from the nucleolus to the ribosome

    Get PDF
    Ribosomes and protein synthesis have been reported to be altered in the cerebral cortex at advanced stages of Alzheimer's disease (AD). Modifications in the hippocampus with disease progression have not been assessed. Sixty-seven cases including middle-aged (MA) and AD stages I-VI were analyzed. Nucleolar chaperones nucleolin, nucleophosmin and nucleoplasmin 3, and upstream binding transcription factor RNA polymerase I gene (UBTF) mRNAs are abnormally regulated and their protein levels reduced in AD. Histone modifications dimethylated histone H3K9 (H3K9me2) and acetylated histone H3K12 (H3K12ac) are decreased in CA1. Nuclear tau declines in CA1 and dentate gyrus (DG), and practically disappears in neurons with neurofibrillary tangles. Subunit 28 ribosomal RNA (28S rRNA) expression is altered in CA1 and DG in AD. Several genes encoding ribosomal proteins are abnormally regulated and protein levels of translation initiation factors eIF2 a, eIF3h and eIF5, and elongation factor eEF2, are altered in the CA1 region in AD. These findings show alterations in the protein synthesis machinery in AD involving the nucleolus, nucleus and ribosomes in the hippocampus in AD some of them starting at first stages (I-II) preceding neuron loss. These changes may lie behind reduced numbers of dendritic branches and reduced synapses of CA1 and DG neurons which cause hippocampal atroph

    Hans Magnus Enzensberg

    Get PDF

    Carbon nanotube film electrodes with acrylic additives: Blocking electrochemical charge transfer reactions

    Get PDF
    Carbon nanotubes (CNTs) processed into conductive films by liquid phase deposition technologies reveal increasing interest as electrode components in electrochemical device platforms for sensing and energy storage applications. In this work we show that the addition of acrylic latex to water-based CNT inks not only favors the fabrication of stable and robust flexible electrodes on plastic substrates but, moreover, sensitively enables the control of their electrical and electrochemical transport properties. Importantly, within a given concentration range, the acrylic additive in the films, being used as working electrodes, effectively blocks undesired faradaic transfer reactions across the electrode–electrolyte interface while maintaining their capacitance response as probed in a three-electrode electrochemical device configuration. Our results suggest a valuable strategy to enhance the chemical stability of CNT film electrodes and to suppress non-specific parasitic electrochemical reactions of relevance to electroanalytical and energy storage applications

    Photoactivity improvement of TiO2 electrodes by thin hole transport layers of reduced graphene oxide

    Get PDF
    Nanostructured TiO2 and graphene-based materials constitute components of actual interest in devices related to solar energy conversion and storage. In this work, we show that a thin layer of electrochemically reduced graphene oxide (ECrGO), covering nanostructured TiO2 photoelectrodes, can significantly improve the photoactivity. In order to understand the working principle, ECrGO/TiO2 photoelectrodes with different ECrGO thicknesses were prepared and studied by a set of photoelectrochemical measurements. Methanol in alkaline conditions was employed as effective hole acceptor probe to elucidate the electronic phenomena in the electrode layers and interfaces. These studies underline the hole accepting properties of ECrGO and reveal the formation of a p-n junction at the interface between ECrGO and TiO2. It is shown for the first time that the resulting space charge region of about 10 nm defines the operational functionality of the ECrGO layer. Films thinner than the space charge region act as hole transport layer (HTL), which efficiently transfers holes to the liquid interface thus leading to enhanced photoactivity. Thicker films however act as hole blocking layer (HBL), resulting in a systematic decrease of the photoactivity. The finding of a thickness dependent threshold value for the operation of ECrGO as HTL and HBL is of general interest for the fabrication of optoelectronic devices with improved performance

    Towards domestic cooking efficiency: A case study on burger pan frying using experimental and computational results

    Get PDF
    It is well known that the use of efficient domestic cooking appliances and equipment can not only save energy, but also improve the quality of the food being prepared. This work raises the question of whether cooking procedures can also contribute to this energy efficiency. Focusing on burger pan frying, experimental data were used to develop a model able to predict cooking outcomes under different power levels supplied by an induction hob. The proposed model takes into account not only the heat consumed by water evaporation in the contact region but also the shrinkage process of the hamburger. A new formulation based on the multiplicative decomposition of the strain deformation gradient is proposed to describe the observed decoupling between weight and volume loss during the process. The model properly predicts temperature, moisture loss and shrinkage, and allows elucidation of the effects of supplying different amounts of energy on the final water content

    Recursos motivacionales para la autorregulación en la actividad física en edad universitaria

    Get PDF
    El objetivo de este estudio fue identicar las diferencias en la autodeterminación de los universitarios según el sexo y si practican o no de manera regular o mantenida AF. Así como conocer el nivel de actividad física y su relación con los tipos de regulación. En el estudio participaron 208 sujetos, el 64.9% mujeres y 35.1% hombres. De la muestra total el 62.5% practican actividad física y el 37.5% no lo hace. La media de edad de los par- ticipantes es de 20,16 años. Se aplicaron dos instrumentos, el Cuestionario de la Regulación de la Conducta en el Ejercicio (BREQ-3) y el Cuestionario de Hábitos de Actividad Física. Los resultados obtenidos indican la regu- lación Identicada es la que prevalece en la muestra evaluada. Respecto al sexo, los hombres tienen una media más alta en motivación integrada en comparación con las mujeres. En cuanto las diferencias en los niveles de motivación según el tipo de actividad física practicada o la ausencia se en- contraron diferencias signicativas en todos los factores excepto en la moti- vación introyectada entre los sedentarios y los demás grupos. Por último, se encontró diferencias signicativas en los factores de regulación Integrada y en Escala Total con los niveles regular o excelente de actividad física.
    corecore