1,947 research outputs found

    Graphene Multi-Protonation: a Cooperative Mechanism for Proton Permeation

    Full text link
    The interaction between protons and graphene is attracting a large interest due to recent experiments showing that these charged species permeate through the 2D material following a low barrier (~ 0.8 eV) activated process. A possible explanation involves the flipping of a chemisorbed proton (rotation of the C-H+^+ bond from one to the other side of the carbon layer) and previous studies have found so far that the energy barriers (around 3.5 eV) are too high to explain the experimental findings. Contrarily to the previously adopted model assuming an isolated proton, in this work we consider protonated graphene at high local coverage and explore the role played by nearby chemisorbed protons in the permeation process. By means of density functional theory calculations exploiting large molecular prototypes for graphene it is found that, when various protons are adsorbed on the same carbon hexagonal ring, the permeation barrier can be reduced down to 1.0 eV. The related mechanism is described in detail and could shed a new light on the interpretation of the experimental observations for proton permeation through graphene.Comment: 16 pages, 5 figure

    Three-Dimensional Wave Packet Approach for the Quantum Transport of Atoms through Nanoporous Membranes

    Full text link
    Quantum phenomena are relevant to the transport of light atoms and molecules through nanoporous two-dimensional (2D) membranes. Indeed, confinement provided by (sub-)nanometer pores enhances quantum effects such as tunneling and zero point energy (ZPE), even leading to quantum sieving of different isotopes of a given element. However, these features are not always taken into account in approaches where classical theories or approximate quantum models are preferred. In this work we present an exact three-dimensional wave packet propagation treatment for simulating the passage of atoms through periodic 2D membranes. Calculations are reported for the transmission of 3^3He and 4^4He through graphdiyne as well as through a holey graphene model. For He-graphdiyne, estimations based on tunneling-corrected transition state theory are correct: both tunneling and ZPE effects are very important but competition between each other leads to a moderately small 4^4He/3^3He selectivity. Thus, formulations that neglect one or another quantum effect are inappropriate. For the transport of He isotopes through leaky graphene, the computed transmission probabilities are highly structured suggesting widespread selective adsorption resonances and the resulting rate coefficients and selectivity ratios are not in agreement with predictions from transition state theory. Present approach serves as a benchmark for studies of the range of validity of more approximate methods.Comment: 4 figure

    Graphdiyne based membranes: exceptional performances for helium separation applications

    Get PDF
    Graphdiyne is a novel two-dimensional material deriving from graphene that has been recently synthesized and featuring uniformly distributed sub-nanometer pores. We report accurate calculations showing that graphdiyne pores permit an almost unimpeded helium transport which can be used for its chemical and isotopic separation. Exceptionally high He/CH_4 selectivities are found which largely exceed the performance of the best membranes used to date for extraction from natural gas. Moreover, by exploiting slight differences in the tunneling probabilities of ^3He and ^4He, we also find promising results for the separation of the Fermionic isotope at low temperature

    An LRP6 mutation (Arg360His) associated with low bone mineral density but not cardiovascular events in a caucasian family

    Get PDF
    We present a family with a rare mutation of the LRP6 gene and for the first time provide evidence for its association with low bone mineral density. Introduction: The Wnt pathway plays a critical role in bone homeostasis. Pathogenic variants of the Wnt co-receptor LRP6 have been associated with abnormal skeletal phenotypes or increased risk of cardiovascular events. Patient and methods: Here we report an index premenopausal patient and her family carrying a rare missense LRP6 pathogenic variant (rs141212743; 0.0002 frequency among Europeans). This variant has been previously associated with metabolic syndrome and atherosclerosis, in the presence of normal bone mineral density. However, the LRP6 variant was associated with low bone mineral density in this family, without evidence for association with serum lipid levels or cardiovascular events. Conclusion: Thus, this novel association shows that LRP6 pathogenic variants may be involved in some cases of early-onset osteoporosis, but the predominant effect, either skeletal or cardiovascular, may vary depending on the genetic background or other acquired factors.Funding: Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Natur

    Temperature-independent quantum logic for molecular spectroscopy

    Get PDF
    We propose a fast and non-destructive spectroscopic method for single molecular ions that implements quantum logic schemes between an atomic ion and the molecular ion of interest. Our proposal relies on a hybrid coherent manipulation of the two-ion system, using optical or magnetic forces depending on the types of molecular levels to be addressed (Zeeman, rotational, vibrational or electronic degrees of freedom). The method is especially suited for the non-destructive precision spectroscopy of single molecular ions, and sets a starting point for new hybrid quantum computation schemes that combine molecular and atomic ions, covering the measurement and entangling steps.Comment: v3. Substantially enlarged manuscript with details of derivations and calculations in two appendices. To appear in PR

    Three-Dimensional Wave-Packet Calculations of the Transmission of He Isotopes through Graphynes Membranes

    Get PDF
    Mendoza, Argentina. 9th-13st of May 2016 ; http://photodynamics9.wixsite.com/phd9N

    Helium Isotopes Quantum Sieving Through Graphtriyne Membranes

    Full text link
    We report accurate quantum calculations of the sieving of Helium atoms by two-dimensional (2D) graphtriyne layers with a new interaction potential. Thermal rate constants and permeances in an ample temperature range are computed and compared for both Helium isotopes. With a pore larger than graphdiyne, the most common member of the gamma - graphyne family, it could be expected that the appearance of quantum effects were more limited. We find, however, a strong quantum behavior that can be attributed to the presence of selective adsorption resonances, with a pronounced effect in the low temperature regime. This effect leads to the appearance of some selectivity at very low temperatures and the possibility for the heavier isotope to cross the membrane more efficiently than the lighter, contrarily to what happened with graphdiyne membranes, where the sieving at low energy is predominantly ruled by quantum tunneling. The use of more approximate methods could be not advisable in these situations and prototypical transition state theory (TST) treatments might lead to large errors

    Peroxynitrite decomposition catalyst ameliorates renal damage and protein nitration in cisplatin-induced nephrotoxicity in rats

    Get PDF
    BACKGROUND: Oxidative stress is involved in cisplatin-nephrotoxicity. However, it has not completely established if reactive nitrogen species and nitrosative stress are involved in this experimental model. The purpose of this work was to study the role of peroxynitrite, a reactive nitrogen specie, in cisplatin-nephrotoxicity using the compound 5,10,15,20-tetrakis (4-sulfonatophenyl) porphyrinato iron (III) (FeTPPS), a soluble complex able to metabolize peroxynitrite. RESULTS: In rats treated with cisplatin (a single intraperitoneal dose of 7.5 mg/kg body weight), renal nitrosative stress was made evident by the increase in 3-nitrotyrosine on day 3. In addition, cisplatin-induced nephrotoxicity was evident by the histological damage of proximal tubular cells and by the increase in (a) serum creatinine, (b) blood urea nitrogen, and (c) urinary excretion of N-acetyl-β-D-glucosaminidase and total protein. Cisplatin-induced nitrosative stress and nephrotoxicity were attenuated by FeTPPS-treatment (15 mg/kg body weight, intraperitoneally, every 12 hours for 3 days). CONCLUSIONS: Nitrosative stress is involved in cisplatin-induced nephrotoxicity in rats. Our data suggest that peroxynitrite is involved, at least in part, in cisplatin-induced nephrotoxicity and protein nitration

    Motivations of the University s tudents in the physical and sports practice of free time. The nautical activities

    Get PDF
    El estudio de los perfiles motivacionales proporciona información detallada sobre los hábitos de los grupos de personas hacia la práctica de la actividad física, permitiendo poder fomentar una motivación más positiva y conseguir una mayor adherencia a la práctica. Así el objetivo de este estudio ha sido clarificar cuáles son las motivaciones frente a la práctica de actividad físico -deportiva de una muestra de jóvenes universitarios, incidiendo especialmente en las actividades náuticas. La muestra estuvo compuesta por 1011 estudiantes de la Universidad de Almería (España). El instrumento utilizado fue el cuestionario de hábitos físicos -deportivos y de práctica de deportes náuticos . Los resultados obtenidos apuntan que los principales motivos para desarrollar la práctica deportiva fueron la flexibilidad horaria y una adecuada a la disponibilidad de su tiempo libre, seguido de la cercanía a su domicilio de las instalaciones. Otros motivos son por diversión, o estar con su grupo de amigos. Respecto a las actividades náuticas, se decide practicar o no sólo porque les gustan, seguido del interés por estar en contacto con el medio natural y acuático. Las modalidades náuticas más practicadas son el piragüismo y la natación. En relación al abandono de la práctica deportiva, claramente se produce por la falta de tiempo por el estudio o el trabajo. Es evidente que la falta de tiempo por los estudios o por el trabajo, perjudica gravemente la adherencia a la actividad física, pero existen porcentajes muy altos de personas (62%) que admiten no practicar por pereza y desgana, por lo que se deben buscar nuevas estra tegias de motivación para que aumente la adherencia a la actividad físico deportiva

    Transmission of Helium Isotopes through Graphdiyne Pores: Tunneling versus Zero Point Energy Effects

    Get PDF
    7 pags.; 7 figs.; 1 tab.Recent progress in the production of new two-dimensional (2D) nanoporous materials is attracting considerable interest for applications to isotope separation in gases. In this paper we report a computational study of the transmission of 4 He and 3 He through the (subnanometer) pores of graphdiyne, a recently synthesized 2D carbon material. The He−graphdiyne interaction is represented by a force field parametrized upon ab initio calculations, and the 4 He/3 He selectivity is analyzed by tunneling-corrected transition state theory. We have found that both zero point energy (of the in-pore degrees of freedom) and tunneling effects play an extraordinary role at low temperatures (≈20−30 K). However, both quantum features work in opposite directions in such a way that the selectivity ratio does not reach an acceptable value. Nevertheless, the efficiency of zero point energy is in general larger, so that 4 He tends to diffuse faster than 3 He through the graphdiyne membrane, with a maximum performance at 23 K. Moreover, it is found that the transmission rates are too small in the studied temperature range, precluding practical applications. It is concluded that the role of the in-pore degrees of freedom should be included in computations of the transmission probabilities of molecules through nanoporous materials. © 2015 American Chemical SocietyThe work has been funded by Spanish MINECO grant FIS2013-48275-C2-1-P. Allocation of computing time by CESGA (Spain) and support by the COST-CMTS Action CM1405 “Molecules in Motion (MOLIM)” are also acknowledged.Peer reviewe
    corecore